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Background + Motivation
Clouds strongly impact the climate

Source: UCAR

Clouds impact Earth’s energy balance and hydrologic cycle 1

https://scied.ucar.edu/learning-zone/clouds/cloud-types


Background + Motivation

Ice clouds are poorly understood 

“The role of thin cirrus clouds for cloud feedback is 
not known and remains a source of possible 
systematic bias…the representation of cirrus in 
GCMs appears to be poor and such clouds are 
microphysically complex.” (IPCC AR5, Ch. 7)

Source: Fir0002/Flagstaffotos
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https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf
https://en.wikipedia.org/wiki/File:Cirrus_sky_panorama.jpg


Background
Ice crystal shape matters

Source: Kenneth Libbrecht, snowcrystals.com

Source: Libbrecht, 2005

● Habit = Shape

● Habit ~ function of temperature and 
supersaturation (i.e., humidity)

● Habit influences:

○ microphysical process rates

○ fall speeds

○ optical properties

● E.g. Ice complexity may induce 
additional cooling effect of -1.1 W m-2 
(Jarvinen et al. 2018)
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http://www.snowcrystals.com/photos/photos.html
https://www.its.caltech.edu/~atomic/publist/rpp5_4_R03.pdf


Methods

● CPI = Cloud Particle 
Imager

● Millions of CPI images 
from various aircraft field 
campaigns

● Lots of data, but limited 
to 2-D 

● Ideally: 3-D features to 
constrain mass-size 
relationships → 
parameterizations

● Basic idea: Train ML 
models that can extract 
3-D features from 2-D 
images

Reconstructing 3-D crystals from CPI images

Credit: Przybylo et al. (2022)

w/ Kara Sulia (U. Albany), Vanessa Przybylo (formerly U. Albany)
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https://journals.ametsoc.org/view/journals/atot/39/4/JTECH-D-21-0094.1.xml


Methods

Synthetic 3-D dataset developed to train models

Synthetic 3D modelsA priori
geometric model 

Source: Pokrifka et al., 2023

● Bullet rosettes chosen as 
prototype; can be 
expanded to other habits

● Sphere size, arm aspect 
ratio, and angle of arms 
perturbed randomly

● Preliminary dataset of 
9,000 crystals generated

● Developed in Python, 
code + dataset will be 
open-source and 
reproducible
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https://doi.org/10.1175/JAS-D-22-0077.1


Methods

Synthetic 3-D dataset developed to train models
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Methods

Overview of machine learning pipeline

Extract 2d features 
from projections

Data in tabular form

X (input): the 2d features 

Y (output): e.g., effective 
density, surface area, # arms

Train 
models

Encoder
(2D-NN)

Decoder
(3D-NN)

Recurrence
(3D-LSTM)

2-D projections 
from training set corresponding 

voxelized model

Option 1: ML to predict 3D attributes

Option 2: Deep learning for explicit reconstruction

Test / Deploy

unseen data

Trained ML 
model

Predictions:
- mass
- # arms
- surface area
- etc.
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Methods

Overview of machine learning pipeline

Extract 2d features 
from projections

Data in tabular form

X (input): the 2d features 

Y (output): e.g., effective 
density, surface area, # arms
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Methods

Details of Option 1: ML to predict 3D attributes

9,000 
synthetic models

Calculate & save 
target outputs:

(1) # arms, 
(2) effective density
(3) effective surface area

9,000 x 24 views
= 216,000 images (samples)

Take 24 random projections 
& calculate 2-D features for 
each projection:

(1) Aspect ratio
(2) Elliptical aspect ratio
(3) # extreme points
(4) Contour area
(5) Area ratio
(6) Complexity
(7) Circularity

- 216,000 rows
- 7 feature columns (inputs)
- 3 target columns (outputs)

Create merged 
tabular dataset

Train model

Test model

80%

20%
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Results

A random forest predicts effective surface area 
and density with moderate to high skill
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R2 = 0.86 R2 = 0.95



Results

Random forest outperforms a linear regression

Multivariate Linear 
Regression

Random Forest

This indicates some 
non-linearities being 

captured by the random 
forest
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R2 = 0.84 R2 = 0.93

R2 = 0.95R2 = 0.86



Results
RF predictions for # arms varies by class
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Confusion matrix for # of arms 
predicted by random forest

Normalized by row (i.e., each 
row sums up to 1.0)

A perfect predictor would show 
1.0 values in the diagonal



Results

CNN can be used to predict 3-D targets directly 
from images without feature engineering

Credit: Arden Dertat

Predict:
• Effective density
• Effective surface area
• # arms
• Etc.

Preliminary results:

0.88 (CNN) > 0.86 (RF)

0.93 (CNN) < 0.95 (RF)

13

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Results
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What if we add an additional view?

Schnaiter et al. 2018Lawson et al. 2006

2D-S probe PHIPS-HALO



Methods

Pipeline w/ two views

9,000 
synthetic models

Calculate & save 
target outputs:

(1) # arms, 
(2) effective density
(3) effective surface area

9,000 x 24 image pairs
= 216,000 image pairs

Take 24 random projection 
pairs & calculate 2-D 
features for each projection 
image of each pair:

(1) Aspect ratio
(2) Elliptical aspect ratio
(3) # extreme points
(4) Contour area
(5) Area ratio
(6) Complexity
(7) Circularity

- 216,000 rows
- 7x2 = 14 feature columns 
(inputs)
- 3 target columns (outputs)

Create merged 
tabular dataset

Train model

Test model

80%

20%
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View 1 View 2



Results

Two views are better than one

Random Forest
w/ single view
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R2 = 0.95R2 = 0.86

R2 = 0.97R2 = 0.89

Random Forest
w/ two views



Results
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Two views are better than one

Single view Two views



Ongoing work

Deep learning: explicit reconstruction

3D Recurrent Reconstruction 
Neural Network (3D-R2N2): 

Choy et al., 2016

Testing: unseen projections
Inference: CPI images

inferred 
voxelized model

Testing/Inference:

Trained model

Training:

Encoder
(2D-NN)

Decoder
(3D-NN)

Recurrence
(3D-LSTM)

2-D projections 
from training set corresponding 

voxelized model
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https://arxiv.org/pdf/1604.00449.pdf


Parameterization

Constraining 3-D microphysics properties 
🡪 better parameterizations

lab measurements

3-D reconstruction

Single-particle 
growth model(s)

dm/dt ~ f(effective density, 
surface area)

compare measured vs. 
modeled

m-D and A-D relationships
(P3, Morrison & Midbrandt 2015; 

Erfani & Mitchell 2016)

implicitly constrain 
parameterizations 

3-D attributes
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m = α DΒ

A = γ Dδ

e.g., replace LUT with 
emulator in PUMAS



Summary
Conclusion

1. A dataset of synthetic bullet rosette meshes was created

2. ML was able to predict effective density and surface area 

with encouraging skill (to be improved)

3. The classification of # arms was more challenging

4. Inferring 3-D properties from CPI images will allow us to 

improve parameterizations moving forward
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Summary
Conclusion

1. A dataset of synthetic bullet rosette meshes was created

2. ML was able to predict effective density and surface area 

with encouraging skills (to be improved)

3. The classification of # arms was more challenging

4. Inferring 3-D properties from CPI images will allow us to 

improve parametrizations moving forward

Contact: jk4730@columbia.edu
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