
CESM1.0.z User’s Guide

CESM Software Engineering Group (CSEG)
NCAR



CESM1.0.z User’s Guide
by CESM Software Engineering Group (CSEG)



Table of Contents
1. Introduction .......................................................................................................................1

How To Use This Document.......................................................................................1
CESM Overview...........................................................................................................1

CESM Software/Operating System Prerequisites .........................................1
CESM Components ............................................................................................2
CESM Component Sets ......................................................................................7
CESM Grids .........................................................................................................8
CESM Machines ................................................................................................10
CESM Validation...............................................................................................10

Downloading CESM ..................................................................................................11
Downloading the code and scripts - starting with CESM1.0.6 ..................11
Obtaining new release versions of CESM - prior to CESM1.0.6 ................12
Downloading input data .................................................................................13

Quick Start (CESM Workflow) .................................................................................14
2. Creating a Case................................................................................................................17

How to create a new case ..........................................................................................17
Modifying an xml file ................................................................................................20
Cloning a case (Experts only) ...................................................................................20

3. Configuring a Case .........................................................................................................23
Configure Overview ..................................................................................................23
Customizing the configuration ................................................................................24

Setting the case PE layout................................................................................25
Setting the case initialization type..................................................................26

Setting component-specific variables ......................................................................27
CAM variables ..................................................................................................28
CLM variables ...................................................................................................30
CICE variables...................................................................................................32
POP2 variables ..................................................................................................33
CISM variables ..................................................................................................34
DATM variables ................................................................................................35
DLND variables ................................................................................................36
DICE variables ..................................................................................................37
DOCN variables................................................................................................37
Driver/coupler variables.................................................................................38
Other variables..................................................................................................40

Reconfiguring a Case .................................................................................................40
Summary of Files in the Case Directory .................................................................40

4. Building a Case ...............................................................................................................43
Input data ....................................................................................................................43

User-created input data ...................................................................................44
Using the input data server.............................................................................44

Build-time variables...................................................................................................45
Compiler settings .......................................................................................................46
User-modified source code .......................................................................................46
Building the executable .............................................................................................46
Rebuilding the executable.........................................................................................47

5. Running a case.................................................................................................................49
Customizing runtime settings ..................................................................................49

Setting run control variables ...........................................................................49
CESM Input/Output........................................................................................50

Load balancing a case ................................................................................................53
Model timing data ............................................................................................53
Using model timing data.................................................................................54

The Run........................................................................................................................56
Setting the time limits ......................................................................................56
Submitting the run............................................................................................56

iii



Restarting a run.................................................................................................57
Data flow during a model run ........................................................................58

Testing a case...............................................................................................................59
6. Post Processing CESM Output.....................................................................................61
7. Porting CESM..................................................................................................................63

Porting to a new machine .........................................................................................63
Porting using a generic machine ....................................................................63
Porting via user defined machine files ..........................................................65

Port Validation............................................................................................................67
8. CESM Testing ..................................................................................................................69

Testing overview ........................................................................................................69
create_production_test ..............................................................................................69
create_test ....................................................................................................................69
create_test_suite..........................................................................................................70
Debugging Tests That Fail.........................................................................................71

9. Use Cases ..........................................................................................................................73
The basic example ......................................................................................................73
Setting up a branch or hybrid run ...........................................................................73
Changing PE layout ...................................................................................................74
Setting CAM output fields ........................................................................................76
Setting CAM forcings ................................................................................................77
Initializing the ocean model with a spun-up initial condition ............................78
Taking a run over from another user.......................................................................79
Use of an Earth System Modeling Framework (ESMF) library and ESMF

interfaces ............................................................................................................80
10. Troubleshooting ............................................................................................................83

Troubleshooting create_newcase .............................................................................83
Troubleshooting configure ........................................................................................83
Troubleshooting job submission problems.............................................................84
Troubleshooting runtime problems .........................................................................84

11. Frequently Asked Questions (FAQ)..........................................................................87
What are the directories and files in my case directory? ......................................87
What are CESM1 env variables and env xml files? ...............................................89
How do I modify the value of CESM env variables?............................................90
Why aren’t my env variable changes working? ....................................................90
Why is there file locking and how does it work? ..................................................90
How do I change processor counts and component layouts on processors? ....91
What is pio?.................................................................................................................91
How do I use pnetcdf?...............................................................................................92
Is there more information about the coupler/driver implementation? .............92
How do I create my own compset? .........................................................................92
How do I add a new grid? ........................................................................................92
What calendars are supported in CESM?...............................................................93
How do I add a new component model to CESM?...............................................93
How are cice and pop decompositions set and how do I override them?.........94
How do I change history file output frequency and content for CAM and CLM

during a run?.....................................................................................................95

iv



A. Supported Component Sets.........................................................................................99
B. Supported Grids...........................................................................................................113
C. Supported Machines ...................................................................................................115
D. env_case.xml variables ...............................................................................................117
E. env_conf.xml variables................................................................................................121
F. env_mach_pes.xml variables......................................................................................129
G. env_build.xml variables.............................................................................................133
H. env_run.xml variables ................................................................................................137
Glossary ..............................................................................................................................147

v



vi



Chapter 1. Introduction

How To Use This Document
This guide instructs both novice and experienced users on building and running
CESM. If you are a new user, we recommend that the introductory sections be read
before moving onto other sections or the Quick Start procedure. This document is
written so, as much as possible, individual sections stand on their own and the user’s
guide can be scanned and sections read in a relatively ad hoc order. In addition, the
web version provides clickable links that tie different sections together.

The chapters attempt to provide relatively detailed information about specific aspects
of CESM1 like setting up a case, building the model, running the model, porting, and
testing. There is also a large section of use cases and a Frequently Asked Questions
(FAQ) section.

Throughout the document, this presentation style indicates shell
commands and options, fragments of code, namelist variables, etc.
Where examples from an interactive shell session are presented,
lines starting with ">" indicate the shell prompt.

Please feel free to provide feedback to CESM about how to improve the documenta-
tion.

CESM Overview
The Community Earth System Model (CESM) is a coupled climate model for sim-
ulating Earth’s climate system. Composed of five separate models simultaneously
simulating the Earth’s atmosphere, ocean, land, land-ice, and sea-ice, plus one cen-
tral coupler component, CESM allows researchers to conduct fundamental research
into the Earth’s past, present, and future climate states.

The CESM system can be configured a number of different ways from both a science
and technical perspective. CESM supports several different resolutions and compo-
nent configurations. In addition, each model component has input options to con-
figure specific model physics and parameterizations. CESM can be run on a number
of different hardware platforms and has a relatively flexible design with respect to
processor layout of components. CESM also supports both an internally developed
set of component interfaces and the ESMF compliant component interfaces (See the
Section called Use of an Earth System Modeling Framework (ESMF) library and ESMF
interfaces in Chapter 9)

The CESM project is a cooperative effort among U.S. climate researchers. Primar-
ily supported by the National Science Foundation (NSF) and centered at the Na-
tional Center for Atmospheric Research (NCAR) in Boulder, Colorado, the CESM
project enjoys close collaborations with the U.S. Department of Energy and the Na-
tional Aeronautics and Space Administration. Scientific development of the CESM
is guided by the CESM working groups, which meet twice a year. The main CESM
workshop is held each year in June to showcase results from the various working
groups and coordinate future CESM developments among the working groups. The
CESM website1 provides more information on the CESM project, such as the manage-
ment structure, the scientific working groups, downloadable source code, and online
archives of data from previous CESM experiments.

CESM Software/Operating System Prerequisites
The following are the external system and software requirements for installing and
running CESM1.0.

1



Chapter 1. Introduction

• UNIX like operating system (LINUX, AIX, OSX)

• csh, sh, perl, and xml scripting languages

• subversion client version 1.6.11 or greater

• Fortran 90 and C compilers. pgi, intel, and xlf are recommended options.

• MPI (although CESM does not absolutely require it for running on one processor
only)

• netcdf 3.6.2 or greater 2

• Earth System Modeling Framework (ESMF) 3 (optional) 5.2.0p1

• pnetcdf 4 (optional) 1.1.1 or newer

The following table contains the version in use at the time of release. These versions
are known to work at the time of the release for the specified hardware.

Table 1-1. Recommmended Software Package Versions by Machine

Machine Version Recommendations

Cray XT Series pgf95 9.0.4, pgcc 10.2, MPT3.5.1

IBM Power Series xlf 12.1, xlC 10.1

IBM Bluegene/P xlf 11.1, xlC 9.0

Generic Linux Machine ifort (intel64) 10.1.018, icc 10.1.018,
openmpi 1.2.8

Note: CESM may not compile with pgi compilers prior to release 9.0.x. PGI Fortran
Version 7.2.5 aborts with an internal compiler error when compiling CESM1.0, specif-
ically POP.

Caution
NetCDF must be built with the same Fortran compiler as CESM. In
the netCDF build the FC environment variable specifies which Fortran
compiler to use. CESM is written mostly in Fortran, netCDF is written
in C. Because there is no standard way to call a C program from a
Fortran program, the Fortran to C layer between CESM and netCDF will
vary depending on which Fortran compiler you use for CESM. When a
function in the netCDF library is called from a Fortran application, the
netCDF Fortran API calls the netCDF C library. If you do not use the
same compiler to build netCDF and CESM you will in most cases get
errors from netCDF saying certain netCDF functions cannot be found.

Parallel-netCDF, also referred to as pnetcdf, is optional. If a user chooses to use
pnetcdf, version 1.1.1. or later should be used with CESM1.0. It is a library that
is file-format compatible with netCDF, and provides higher performance by using
MPI-IO. Pnetcdf is turned on inside pio by setting the PNETCDF_PATH variable in
the pio CONFIG_ARGS in the Macros.$MACH file. You must also specify that you
want pnetcdf at runtime via the io_type argument that can be set to either "netcdf" or
"pnetcdf" for each component.

CESM Components
CESM consists of five geophysical models: atmosphere (atm), sea-ice (ice), land (lnd),
ocean (ocn), and land-ice (glc), plus a coupler (cpl) that coordinates the models and
passes information between them. Each model may have "active," "data," "dead," or
"stub" component version allowing for a variety of "plug and play" combinations.

2



Chapter 1. Introduction

During the course of a CESM run, the model components integrate forward in time,
periodically stopping to exchange information with the coupler. The coupler mean-
while receives fields from the component models, computes, maps, and merges this
information, then sends the fields back to the component models. The coupler bro-
kers this sequence of communication interchanges and manages the overall time pro-
gression of the coupled system. A CESM component set is comprised of six compo-
nents: one component from each model (atm, lnd, ocn, ice, and glc) plus the coupler.
Model components are written primarily in Fortran 90.

The active (dynamical) components are generally fully prognostic, and they are state-
of-the-art climate prediction and analysis tools. Because the active models are rela-
tively expensive to run, data models that cycle input data are included for testing,
spin-up, and model parameterization development. The dead components generate
scientifically invalid data and exist only to support technical system testing. The dead
components must all be run together and should never be combined with any active
or data versions of models. Stub components exist only to satisfy interface require-
ments when the component is not needed for the model configuration (e.g., the active
land component forced with atmospheric data does not need ice, ocn, or glc compo-
nents, so ice, ocn, and glc stubs are used).

The CESM components can be summarized as follows:

Model Type Model Name Component
Name

Type Description

atmosphere atm cam active The
Community
Atmosphere
Model (CAM)
is a global
atmospheric
general
circulation
model
developed
from the
NCAR CCM3.

atmosphere atm datm data The data
atmosphere
component is a
pure data
component
that reads in
atmospheric
forcing data

atmosphere atm xatm dead

atmosphere atm satm stub

3



Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

land lnd clm active The
Community
Land Model
(CLM) is the
result of a
collaborative
project
between
scientists in the
Terrestrial
Sciences
Section of the
Climate and
Global
Dynamics
Division
(CGD) at
NCAR and the
CESM Land
Model
Working
Group. Other
principal
working
groups that
also contribute
to the CLM are
Biogeochem-
istry,
Paleoclimate,
and Climate
Change and
Assessment.

land lnd dlnd data The data land
component
differs from
the other data
models in that
it can run as a
purely
data-runoff
model (reading
in runoff data)
or as a purely
data-land
model (reading
in coupler
history data for
atm/land
fluxes and land
albedos
produced by a
previous run)
or both.

land lnd xlnd dead

4



Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

land lnd slnd stub

ocean ocn pop active The ocean
model is an
extension of
the Parallel
Ocean
Program (POP)
Version 2 from
Los Alamos
National
Laboratory
(LANL).

ocean ocn docn data The data ocean
component has
two distinct
modes of
operation. It
can run as a
pure data
model, reading
ocean SSTs
(normally
climatological)
from input
datasets,
interpolating
in space and
time, and then
passing these
to the coupler.
Alternatively,
docn can
compute
updated SSTs
based on a slab
ocean model
where bottom
ocean heat flux
convergence
and boundary
layer depths
are read in and
used with the
atmo-
sphere/ocean
and ice/ocean
fluxes obtained
from the
coupler.

ocean ocn xocn dead

ocean ocn socn stub

5



Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

sea-ice ice cice active The sea-ice
component
(CICE) is an
extension of
the Los
Alamos
National
Laboratory
(LANL) sea-ice
model and was
developed
though
collaboration
within the
CESM Polar
Climate
Working
Group
(PCWG). In
CESM, CICE
can run as a
fully
prognostic
component or
in prescribed
mode where
ice coverage
(normally
climatological)
is read in.

sea-ice ice dice data The data ice
component is a
partially
prognostic
model. The
model reads in
ice coverage
and receives
atmospheric
forcing from
the coupler,
and then it
calculates the
ice/atmosphere
and ice/ocean
fluxes. The
data ice
component
acts very
similarly to
CICE running
in prescribed
mode.

sea-ice ice xice dead

sea-ice ice sice stub

6



Chapter 1. Introduction

Model Type Model Name Component
Name

Type Description

land-ice glc cism active The CISM
component is
an extension of
the Glimmer
ice sheet
model.

land-ice glc sglc stub

coupler cpl cpl active The
CCSM4/CESM1
coupler was
built primarily
through a
collaboration
of the NCAR
CESM
Software
Engineering
Group and the
Argonne
National
Laboratory
(ANL). The
MCT coupling
library
provides much
of the
infrastructure.
cpl7 is used in
CCSM4 and
CESM1 and is
technically a
completely
new driver and
coupler
compared to
CCSM3.

CESM Component Sets
The CESM components can be combined in numerous ways to carry out various
scientific or software experiments. A particular mix of components, along with
component-specific configuration and/or namelist settings is called a component
set or "compset." CESM has a shorthand naming convention for component sets that
are supported out-of-the-box.

The compset name usually has a well defined first letter followed by some characters
that are indicative of the configuration setup. Each compset name has a correspond-
ing short name. Users are not limited to the predefined component set combinations.
A user may define their own component set.

See the component set table for a complete list of supported compset options. Run-
ning create_newcase with the option "-list" will also always provide a listing of the
supported out-of-the-box component sets for the local version of CESM1. In general,
the first letter of a compset name indicates which components are used. An exception
to this rule is the use of "G" as a second letter to indicate use of the active glc model,

7



Chapter 1. Introduction

CISM. The list of first letters and their corresponding component sets each denotes
appears below:

Designation Components Details

A datm,dlnd,dice,docn,sglc All DATA components
with stub glc (used
primarily for testing)

B cam,clm,cice,pop2,sglc FULLY ACTIVE
components with stub glc

C datm,dlnd,dice,pop2,sglc POP active with data atm,
lnd(runoff), and ice plus
stub glc

D datm,slnd,cice,docn,sglc CICE active with data atm
and ocean plus stub land
and glc

E cam,clm,cice,docn,sglc CAM, CLM, and CICE
active with data ocean
(som mode) plus stub glc

F cam,clm,cice,docn,sglc CAM, CLM, and
CICE(prescribed mode)
active with data ocean
(sstdata mode) plus stub
glc

G datm,dlnd,cice,pop2,sglc POP and CICE active with
data atm and lnd(runoff)
plus stub glc

H datm,slnd,cice,pop2,sglc POP and CICE active with
data atm and stub land
and glc

I datm,clm,sice,socn,sglc CLM active with data atm
and stub ice, ocean, and
glc

S satm,slnd,sice,socn,sglc All STUB components
(used for testing only)

X xatm,xlnd,xice,xocn,sglc All DEAD components
except for stub glc (used
for testing only)

CESM Grids
The grids are specified in CESM1 by setting an overall model resolution. Once the
overall model resolution in set, components will read in appropriate grids files
and the coupler will read in appropriate mapping weights files. Coupler mapping
weights are always generated externally in CESM1. The components will send
the grid data to the coupler at initialization, and the coupler will check that the
component grids are consistent with each other and with the mapping weights files.

In CESM1, the ocean and ice must be on the same grid, but unlike CCSM3, the at-
mosphere and land can now be on different grids. Each component determines its
own unique grid decomposition based upon the total number of pes assigned to that
component.

CESM1 supports several types of grids out-of-the-box including single point, finite
volume, spectral, cubed sphere, displaced pole, and tripole. These grids are used

8



Chapter 1. Introduction

internally by the models. Input datasets are usually on the same grid but in some
cases, they can be interpolated from regular lon/lat grids in the data models. The
finite volume and spectral grids are generally associated with atmosphere and land
models but the data ocean and data ice models are also supported on those grids.
The cubed sphere grid is used only by the active atmosphere model, cam. And the
displaced pole and tripole grids are used by the ocean and ice models. Not every grid
can be run by every component.

CESM1 has a specific naming convention for individual grids as well as the overall
resolution. The grids are named as follows:

• "[dlat]x[dlon]" are regular lon/lat finite volume grids where dlat and dlon are the
approximate grid spacing. The shorthand convention is "fnn" where nn is generally
a pair of numbers indicating the resolution. An example is 1.9x2.5 or f19 for the
approximately "2-degree" finite volume grid. Note that CAM uses an [nlat]x[nlon]
naming convection internally for this grid.

• "Tnn" are spectral lon/lat grids where nn is the spectral truncation value for the
resolution. The shorthand name is identical. An example is T85.

• "ne[X]np[Y]" are cubed sphere resolutions where X and Y are integers. The short
name is generally ne[X]. An example is ne30np4 or ne30.

• "pt1" is a single grid point.

• "gx[D]v[n]" is a displaced pole grid where D is the approximate resolution in de-
grees and n is the grid version. The short name is generally g[D][n]. An example is
gx1v6 or g16 for a grid of approximately 1-degree resolution.

• "tx[D]v[n]" is a tripole grid where D is the approximate resolution in degrees and
n is the grid version. The short name is [agrid]_[lgrid]_[oigrid]. An example is
ne30_f19_g16.

The model resolution is specified by setting a combination of these resolutions. In
general, the overall resolution is specified in one of the two following ways for reso-
lutions where the atmosphere and land grids are identical or not.

"[algrid]_[oigrid]"

In this grid, the atmosphere and land grid are identical and specified by the value
of "algrid". The ice and ocean grids are always identical and specified by "oigrid".
For instance, f19_g16 is the finite volume 1.9x2.5 grid for the atmosphere and
land components combined with the gx1v6 displaced pole grid for the ocean
and ice components.

"[agrid]_[lgrid]_[oigrid]" or "[agrid][lgrid]_[oigrid]" (for short names)

In this case, the atmosphere, land, and ocean/ice grids are all unique. For exam-
ple ne30_f19_g16 is the cubed sphere ne30np4 atmospheric grid running with
the finite volume 1.9x2.5 grid for the land model combined with the gx1v6 dis-
placed pole grid running on the ocean and ice models.

For a complete list of currently supported grid resolutions, please see the supported
resolutions table.

The ocean and ice models run on either a Greenland dipole or a tripole grid (see
figures). The Greenland Pole grid is a latitude/longitude grid, with the North Pole
displaced over Greenland to avoid singularity problems in the ocn and ice models.
Similarly, the Poseidon tripole grid (http://climate.lanl.gov/Models/POP/ ) is a lat-
itude/longitude grid with three poles that are all centered over land.

9



Chapter 1. Introduction

Greenland Pole Grid

Poseidon Tripole Grid

CESM Machines
Scripts for supported machines, prototype machines and generic machines are pro-
vided with the CESM1 release. Supported machines have machine specific files and
settings added to the CESM1 scripts and are machines that should run CESM cases
out-of-the-box. Machines are supported in CESM on an individual basis and are usu-
ally listed by their common site-specific name. To get a machine ported and function-
ally supported in CESM, local batch, run, environment, and compiler information
must be configured in the CESM scripts. Prototype machines are machines in the
CESM user community that CESM has been ported to and the machine specific files
and settings were provided by the user community. Prototype machines all start with
the prefix prototype_. These machines may not work out-of-the-box, however, to the
best of NCAR’s knowledge these machine specific files and settings worked at one
time. Generic machine generally refers more to classes of machines, like IBM AIX
or a linux cluster with an intel compiler, and the generic machine names in CESM1
all start with the generic_ prefix. Generic machines require that a user provide some
settings via command line options with create_newcase and then some additional
effort will generally be required to get the case running. Generic machines are handy
for quickly getting a case running on a new platform, and they also can accelerate
the porting process. For more information on porting, see Chapter 7. To get a list of
current machines in each of these categories (supported, prototype and generic) run
script create_newcase with option -list from the $CCSMROOT directory.

The list of available machines are documented in CESM machines . Running cre-
ate_newcase with the "-list" option will also show the list of available machines for
the current local version of CESM1. Supported machines have undergone the full
CESM porting process. A prototype machine is provided by the user community and
may not work out-of-the-box, but it is a good starting point for a port to a new ma-
chine of the same type. A generic machine is provided as a starting point for new
users to introduce a machine that does not belong to any of the above categories. The
machines available in each of these categories changes as access to machines change
over time.

CESM Validation
Although CESM1.0 can be run out-of-the-box for a variety of resolutions, component
combinations, and machines, MOST combinations of component sets, resolutions,
and machines have not undergone rigorous scientific climate validation.

Long control runs are being carried out, and these will be documented in future ver-
sions of this guide, located at http://www.cesm.ucar.edu/models/cesm1.0. Model
output from these long control runs will accompany future releases, and these con-
trol runs should be scientifically reproducible on the original platform or other plat-

10



Chapter 1. Introduction

forms. Bit-for-bit reproducibility cannot be guaranteed due to variations in compiler
or system versions.

Users should carry out your own validations on any platform prior to doing scientific
runs or scientific analysis and documentation.

Downloading CESM

Downloading the code and scripts - starting with CESM1.0.6
** IMPORTANT NOTE ** Starting with CESM1.0.6, the Subversion repository path has
changed. All documetation for downloading the most current version of the model has been
updated to reflect this change and older version differences are noted.

CESM release code will be made available through a Subversion repository. Access to
the code will require Subversion client software in place that is compatible with our
Subversion server software, such as a recent version of the command line client, svn.
Currently, our server software is at version 1.6.11. According to the information on
the Subversion FAQ5, it should be ok to use a client at version 1.5 or later, although
we cannot guarantee a client older than 1.6.11. For more information or to download
open source tools, visit:

http://subversion.tigris.org/6

With a valid svn client installed on the machine where CESM1 will be built and run,
the user may download the latest version of the release code. First view the available
release versions with the following command:

** IMPORTANT NOTE ** Starting with CESM1.0.6, the Subversion repository path
has changed.

> svn list https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags

For all versions prior to CESM1.0.6, please use the following command to view avail-
able releases.

> svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions

When contacting the Subversion server for the first time, the following certificate
message will likely be generated:

Error validating server certificate for ’https://svn-ccsm-models.cgd.ucar.edu:443’:
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!

- The certificate hostname does not match.
- The certificate has expired.

Certificate information:
- Hostname: localhost.localdomain
- Valid: from Feb 20 23:32:25 2008 GMT until Feb 19 23:32:25 2009 GMT
- Issuer: SomeOrganizationalUnit, SomeOrganization, SomeCity, SomeState, --
- Fingerprint: 86:01:bb:a4:4a:e8:4d:8b:e1:f1:01:dc:60:b9:96:22:67:a4:49:ff

(R)eject, accept (t)emporarily or accept (p)ermanently?

After accepting the certificate, the repository will request a username and password.
Be aware that the request is set to the current machine login id and you must enter the
CESM registered default username of ’guestuser’ by pressing the ’Enter’ key when
prompted for a Username.

11



Chapter 1. Introduction

You may be prompted up to 3 times for the username and password when checking
out the code for the first time from this new Subversion path. This is because the
code is distributed across a number of different Subversion repositories and each
repository requires authentication.

Once correctly entered, the username and password will be cached in a protected
subdirectory of the user’s home directory so that repeated entry of this information
will not required for a given machine.

The release tags should follow a recognizable naming pattern, and they can be
checked out from the central source repository into a local sandbox directory. The
following example shows how to checkout model version cesm1.0.6:

> svn co https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_0_6 cesm1_0_6

Caution
If a problem was encountered during checkout, which may happen with
an older version of the client software, it may appear to have down-
loaded successfully, but in fact only a partial checkout has occurred. To
ensure a successful download, make sure the last line of svn output
has the following statement:

Checked out revision XXXXX.

Or, in the case of an ’svn update’ or ’svn switch’:

Updated to revision XXXXX.

This will create a directory called cesm1_0_6 that can be used to modify, build, and
run the model. The following Subversion subcommands can be executed in the work-
ing sandbox directory.

For various information regarding the release version checked out...

> svn info

For a listing of files that have changed since checkout...

> svn status

For a description of the changes made to the working copy...

> svn diff

Obtaining new release versions of CESM - prior to CESM1.0.6
** IMPORTANT NOTE ** Starting with CESM1.0.6, the Subversion repository path has
changed. Consequently, the information below regarding ’svn update’ or ’svn switch’ is only
valid for CESM releases prior to CESM1.0.6. Follow the steps outlined above to upgrade to
CESM1.0.6 from previous versions of the model.

To update to a newer version of the release code you can download a new version of
CESM1.0 from the svn central source repository in the following way:

Suppose for example that a new version of cesm1.0 is available at https://svn-ccsm-
release.cgd.ucar.edu/model_versions/cesm1_0_<newversion>. This version can be
checked out directly using the same standard CESM download method.

As an alternative, some users may find the svn switch operation useful. In particular,
if you’ve used svn to check out the previous release, cesm1_0_<previousversion>,
and if you’ve made modifications to that code, you should consider using the svn

12



Chapter 1. Introduction

switch operation. This operation will not only upgrade your code to the version
cesm1_0_<newversion>, but will also attempt to reapply your modifications to the
newer version.

How to use the svn switch operation:

Suppose you’ve used svn to check out cesm1_0_<previousversion> into the directory
called /home/user/cesm1_0

1. Make a backup copy of /home/user/cesm1_0 -- this is important in case you
encounter any problems with the update

2. cd to the top level of your cesm1_0 code tree...
> cd /home/user/cesm1_0

3. Issue the following svn command...
> svn switch https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_0_<newversion>

The svn switch operation will upgrade all the code to the new
cesm1_0_<newversion> version, and for any files that have been modified, will
attempt to reapply those modifications to the newer code.

Note that an update to a newer version of the release code may result in conflicts
with modified files in the local working copy. These conflicts will likely require that
differences be resolved manually before use of the working copy may continue. For
help in resolving svn conflicts, please visit the subversion website,

http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve7

A read-only option is available for users to view via a web browser at

https://svn-ccsm-release.cgd.ucar.edu8

where the entire CESM1 release directory tree can be navigated.

The following examples show common problems and their solutions.

Problem 1: If the hostname is typed incorrectly:

> svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_0_<version>
svn: PROPFIND request failed on ’/model_versions/cesm1_0_<version>’
svn: PROPFIND of ’/model_versions/cesm1_0_<version>’: Could not resolve hostname ‘svn-ccsm-releese’: Host not found (https://svn-ccsm-releese)

Problem 2: If http is typed instead of https:

> svn list http://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_0_<version>
svn: PROPFIND request failed on ’/model_versions/cesm1_0_<version>’
svn: PROPFIND of ’/model_versions/cesm1_0_<version>’: could not connect to server (http://svn-ccsm-release.cgd.ucar.edu)

Downloading input data
Input datasets are needed to run the model. CESM input data will be made available
through a separate Subversion input data repository. The username and password
for the input data repository will be the same as for the code repository.

Note: The input data repository contains datasets for many configurations and resolutions
and is well over 1 TByte in total size. DO NOT try to download the entire dataset.

Datasets can be downloaded on a case by case basis as needed and CESM now pro-
vides tools to check and download input data automatically.

A local input data directory should exist on the local disk, and it also needs to be
set in the CESM scripts via the variable $DIN_LOC_ROOT_CSMDATA. For

13



Chapter 1. Introduction

supported machines, this variable is preset. For generic machines, this variable
is set as an argument to create_newcase. Multiple users can share the same
$DIN_LOC_ROOT_CSMDATA directory.

The files in the subdirectories of $DIN_LOC_ROOT_CSMDATA should be write-
protected. This prevents these files from being accidentally modified or deleted. The
directories in $DIN_LOC_ROOT_CSMDATA should generally be group writable, so
the directory can be shared among multiple users.

As part of the process of generating the CESM executable, the utility,
check_input_data is called, and it attempts to locate all required input data for the
case based upon file lists generated by components. If the required data is not found
on local disk in $DIN_LOC_ROOT_CSMDATA, then the data will be downloaded
automatically by the scripts or it can be downloaded by the user by invoking
check_input_data with the -export command argument. If you want to download
the input data manually you should do it before you build CESM.

It is possible for users to download the data using svn subcommands directly, but
use of the check_input_data script is highly recommended to ensure that only the
required datasets are downloaded. Again, users are STRONGLY DISCOURAGED
from downloading the entire input dataset from the repository due to the size.

Quick Start (CESM Workflow)
The following quick start guide is for versions of CESM that have already been ported
to the local target machine. If CESM has not yet been ported to the target machine,
please see Chapter 7. If you are new to CESM1, please consider reading the introduc-
tion first

These definitions are required to understand this section:

• $COMPSET refers to the component set.

• $RES refers to the model resolution.

• $MACH refers to the target machine.

• $CCSMROOT refers to the CESM root directory.

• $CASE refers to the case name.

• $CASEROOT refers to the full pathname of the root directory where the case
($CASE) will be created.

• $EXEROOT refers to the executable directory. ($EXEROOT is normally NOT the
same as $CASEROOT).

• $RUNDIR refers to the directory where CESM actually runs. This is normally set
to $EXEROOT/run.

This is the procedure for quickly setting up and running a CESM case.

1. Download CESM (see Download CESM).

2. Select a machine, a component, and a resolution from the list displayed after in-
voking this command:
> cd $CCSMROOT/scripts
> create_newcase -list

See the component set table for a complete list of supported compset options.

See the resolution table for a complete list of model resolutions.

See the machines table for a complete list of machines.

3. Create a case.
14



Chapter 1. Introduction

The create_newcase command creates a case directory containing the scripts and
xml files to configure a case (see below) for the requested resolution, component
set, and machine. create_newcase has several required arguments and if a generic
machine is used, several additional options must be set (invoke create_newcase
-h for help).

If running on a supported machine, ($MACH), then invoke create_newcase as
follows:
> create_newcase -case $CASEROOT \

-mach $MACH \
-compset $COMPSET \
-res $RES

If running on a new target machine, see porting in Chapter 7.

4. Configure the case.

Issuing the configure command creates component namelists and machine spe-
cific build and run scripts. Before invoking configure, modify the case settings in
$CASEROOT as needed for the experiment.

a. cd to the $CASEROOT directory.
> cd $CASEROOT

b. Modify configuration settings in env_conf.xml and/or in
env_mach_pes.xml (optional). (Note: To edit any of the env xml files, use
the xmlchange command. invoke xmlchange -h for help.)

c. Invoke the configure command.
> configure -case

5. Build the executable.

a. Modify build settings in env_build.xml (optional).

b. Run the build script.
> $CASE.$MACH.build

6. Run the case.

a. Modify runtime settings in env_run.xml (optional). In particular, set the
DOUT_S variable to FALSE.

b. Submit the job to the batch queue. This example uses a submission com-
mand for a Cray computer:
> qsub $CASE.$MACH.run

7. When the job is complete, review the following directories and files

a. $RUNDIR. This directory is set in the env_build.xml file. This is the loca-
tion where CESM was run. There should be log files there for every compo-
nent (ie. of the form cpl.log.yymmdd-hhmmss). Each component writes its
own log file. Also see whether any restart or history files were written. To
check that a run completed successfully, check the last several lines of the
cpl.log file for the string " SUCCESSFUL TERMINATION OF CPL7-CCSM
".

b. $CASEROOT/logs. The log files should have been copied into this direc-
tory if the run completed successfully.

c. $CASEROOT. There could be a standard out and/or standard error file.

d. $CASEROOT/CaseDocs. The case namelist files are copied into this direc-
tory from the $RUNDIR.

e. $CASEROOT/timing. There should be a couple of timing files there that
summarize the model performance.

15



Chapter 1. Introduction

f. $DOUT_S_ROOT/$CASE. This is the archive directory. If DOUT_S is
FALSE, then no archive directory should exist. If DOUT_S is TRUE, then
log, history, and restart files should have been copied into a directory tree
here.

Notes
1. http://www.cesm.ucar.edu/

2. http://www.unidata.ucar.edu/software/netcdf/

3. http://www.earthsystemmodeling.org/download/releases.shtml

4. http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download

5. http://subversion.apache.org/faq.html#interop

6. http://subversion.tigris.org

7. http://svnbook.red-bean.com/en/1.5/svn.tour.cycle.html#svn.tour.cycle.resolve

8. https://svn-ccsm-release.cgd.ucar.edu

16



Chapter 2. Creating a Case

The first step in creating a CESM experiment is to use create_newcase.

How to create a new case
In what follows, $CCSMROOT is the full pathname of the root directory of your
CESM source code. First use the -h option to document the create_newcase options.
Then use the -l option to determine which component sets, resolutions, and machines
are supported.

> cd $CCSMROOT/scripts
> create_newcase -h
> create_newcase -l

As explained in cesm compsets, a component set (compset) defines the specific
model components that will be used in a given CESM configuration, along with
any component-specific namelist or configuration settings that are specific to
this configuration. See the component set table for a complete list of supported
compset options. If you want to create a custom compset, create an appropriate xml
compset file and use the create_newcase option -compset_file on the create_newcase
command line. For more information, see the frequently asked quesitons (FAQ)
section How do I create my own compset?

See the grids table for a complete list of supported grids options.

See the machines table for a complete list of machines.

Note: CESM component sets and resolutions have both short and long names. Either
the short or long name can be entered as input to create_newcase. As an example, the
component set B_1850_RAMPCO2_CN has the short name B1850RMCN. Similarly, the
resolution, 0.9x2.5_gx1v6 has the short name f09_g16. Both the long and short names
appear in the output from create_newcase -l, where the short name always appears in
parentheses.

For a generic machine, create_newcase can be invoked with the following arguments:

> create_newcase -case [case name] \
-mach [machine name] \
-compset [compset name] \
-res [resolution] \
-scratchroot [executable root directory] \
-din_loc_root_csmdata [input data root directory] \
-max_tasks_per_node [max mpi tasks per node] \
[-pes_file [user-defined pes-setup file]] \
[-compset_file [user-defined compset file]] \
[-pecount [S, M, L, X1, or X2]] \
[-silent] [-verbose] \
[-xmlmode normal/expert]

For a non-generic machine, create_newcase can be invoked with the following argu-
ments:

> create_newcase -case [case name] \
-mach [machine name] \
-compset [compset name] \
-res [resolution] \
[-pes_file [user-defined pes-setup file]] \
[-compset_file [user-defined compset file]] \
[-pecount [S, M, L, X1, or X2]] \
[-silent] [-verbose] \

17



Chapter 2. Creating a Case

[-xmlmode normal/expert]

Note: -case, -mach, -compset and -res are required arguments to create_newcase. In
addition, -scratchroot, -din_loc_root_csmdata and -max_tasks_per_node are additional
required arguments when a generic machine is targeted.

If you want to use your own pes setup file, specify the full pathname of that file
for the optional -pes_file argument. The sample pes_file format is provided at
$CCSMROOT/sample_pes_file.xml.

Here is a simple example of using create_newcase for a non-generic machine.

> cd $CCSMROOT/scripts
> create_newcase -case ~/cesm/b40.B2000 \

-compset B_2000 \
-res 0.9x1.25_gx1v6 -mach yellowstone

This example creates a $CASEROOT directory ~/cesm/b40.B2000 where $CASE is
b40.B2000 with a model resolution of 0.9x1.25_gx1v6 (a 1-degree atmosphere/land
grid with a nominal 1-degree ocean/ice grid using the gx1v6 ocean mask). The com-
ponent set B_2000 uses fully active components configured to produce a present-day
simulation.

Note: The complete example appears in the basic example. $CASE can include letters,
numbers, ".", and "_". Note that create_newcase creates the $CASEROOT directory. If
the directory already exists, it prints a warning and aborts.

create_newcase creates the directory $CASEROOT, which is specified by the -case
option. In $CASEROOT, create_newcase installs the files and directories that are re-
sponsible for configuring, building, and running the case. For example, the above
command creates the following files and directories in ~/cesm/b40.B2000/. (Note
that user-modifiable files/directories appear in italics.)

Directory or Filename Description

LockedFiles/ A directory that holds copies of files that
should not be changed.

Macros.yellowstone Contains machine-specific makefile
directives. In the current release, the
Macros have been organized into groups
of machine-dependent files each
containing site-specific and
machine-specific options.

README/ A directory of README files for the
components.

README.case A file detailing the create_newcase
usage in creating your case. This is a
good place to keep track of runtime
problems and changes.

SourceMods A directory where users can place
modified source code.

Tools/ A directory containing support utility
scripts. Users should never need to
access the contents of this directory.

18



Chapter 2. Creating a Case

Directory or Filename Description
check_input_data A script that checks for various input

datasets and moves them into place.

configure A script used to configure your case.

create_production_test A script used to create a test of your
case.

env_build.xml Controls model build settings (see
customizing a build).

env_case.xml Sets model components and resolution.
This file cannot be modified after a case
has been created. To make changes,
re-run create_newcase with different
options.

env_conf.xml Controls general settings including run
initialization type (see the Section called
Setting the case initialization type in
Chapter 3), coupler mapping files,
component configuration, and namelist
generation. Sets environment variables
that are used by the component
template scripts to generate component
namelist and build scripts (see
customizing components).

env_mach_pes.xml Controls component machine-specific
processor layout (see the Section called
Setting the case PE layout in Chapter 3).
The settings in this are critical to a
well-load-balanced simulation (see
loadbalancing a run).

env_mach_specific A file used to set a number of
machine-specific environment variables
for building and/or running. This file
can be edited at any time. However,
build environment variables should not
be edited after a build is invoked.

env_run.xml Controls run-time settings such as
length of run, frequency of restarts,
output of coupler diagnostics, and
short-term and long-term archiving. See
running a case.

xmlchange A script used to modify values in the
xml files.

For more complete information about the files in the case directory, see the Section
called What are the directories and files in my case directory? in Chapter 11

Note: Since default values are provided for the above xml file variables, you could now go
to configuring a case and configure your case. However, you should first understand what
variables you might want to change and how these xml variables are used by the scripts.
Please continue reading below if you are a new user.

The xml variables in the env_*.xml files are translated into csh environment vari-
ables with the same name by the script Tools/ccsm_getenv. Conversion of xml vari-
ables to environment variables is used by numerous script utilities as part of con-

19



Chapter 2. Creating a Case

figuring, building, and running a given case. It is important to note that you do not
explicitly see this conversion.

Note: Users can only modify the xml variables. Users cannot modify the csh environment
variables directly.

Complete lists of CESM environment variables in the xml files that appear in
$CASEROOT are provided in env_case.xml variables, env_conf.xml variables ,
env_mach_pes.xml variables , env_build.xml variables , and env_run.xml variables.

Modifying an xml file
Users can edit the xml files directly to change the variable values. However, modifi-
cation of variables in the xml scripts is best done using the xmlchange script in the
$CASEROOT directory since it performs variable error checking as part of changing
values in the xml files. To invoke the xmlchange script:

xmlchange -file [name] -id [name] -val [name] -help -silent -verbose -warn -append

-file

The xml file to be edited.

-id

The xml variable name to be changed.

-val

The intended value of the variable associated with the -id argument.

Note: If you want a single quotation mark ("’", also called an apostrophe) to appear
in the string provided by the -val option, you must specify it as "&apos;".

-silent

Turns on silent mode. Only fatal messages will be issued.

-verbose

Echoes all settings made by configure.

-help

Print usage info to STDOUT.

-warn

Warn and abort if you would be overwriting a current value in the field. This is
useful so you make sure you aren’t overwriting a field that is currently set.

-append

Append the given value to the end of the current value of the field. Sometimes
you want to add an option to the end of an existing field, making sure you
leave the current value there (such as adding additional options to the
CAM_CONFIG_OPTS variable).

20



Chapter 2. Creating a Case

Cloning a case (Experts only)
This is an advanced feature provided for expert users. If you are a new user, skip this
section.

If you have access to the run you want to clone, the create_clone command will
create a new case while also preserving local modifications to the case that you want
to clone. You can run the utility create_clone either from $CCSMROOT or from the
directory where you want the new case to be created. It has the following arguments:

-case

The name or path of the new case.

-clone

The full pathname of the case to be cloned.

-silent

Enables silent mode. Only fatal messages will be issued.

-verbose

Echoes all settings.

-help

Prints usage instructions.

Here is the simplest example of using create_clone:

> cd $CCSMROOT/scripts
> create_clone -case $CASEROOT -clone $CLONEROOT

When invoking create_clone, the following files are cloned in the new
$CLONEROOT case directory. Note that the new case directory will
be identical to the cloned case directory except for the original cloned
scripts $CASEROOT.$MACH.build, $CASEROOT.$MACH.clean_build,
$CASEROOT.$MACH.run, and $CASEROOT.$MACH.l_archive, which will have
new names in the new case.

Important:: Do not change anything in the env_case.xml file. In addition, if you want to
modify env_conf.xml, the new case will no longer be a clone, and you will need to config-
ure -cleanall, which removes all files associated with all previous invocations of the con-
figure script. The $CASEROOT/ directory will now appear as if create_newcase had just
been run -- with the exception that local modifications to the env_* files are preserved. The
Buildconf/ directory will be removed, however. As a result, any changes to the namelist
generation scripts in Buildconf/ will not be preserved. Before invoking this command,
make backup copies of your "resolved" component namelists in the Buildconf/ directory
if modifications to the generated scripts were made.

Another approach to duplicating a case is to use the information in that case’s
README.case file to create a new case. Note that this approach will not preserve
any local modifications that were made to the original case, such as source-code or
build-script modifications; you will need to import those changes manually.

21



Chapter 2. Creating a Case

22



Chapter 3. Configuring a Case

Configure Overview
Configure generates buildnml and buildexe scripts for each component in the Build-
conf directory. It also generates build, run, l_archive, and clean_build scripts in the
CASEROOT directory. These scripts generate namelist for components and build and
run the CESM1 model.

configure (invoked with the -case option) uses variables in env xml files to generate
a new Buildconf/ directory and several new files in $CASEROOT.

Note: Any user modifications to env_conf.xml and env_mach_pes.xml must be done
before configure is invoked. In the simplest case, configure can be run without modifying
either of these files and default settings will be then be used.

Before exploring the details of configure, it is important to understand the concept of
locked env files. The env files are "locked" after the variables have been used by other
parts of the system and cannot be changed. The scripts do this by "locking" a file and
not permitting the user to modify that file. More information on locking files can be
found in the Section called Why is there file locking and how does it work? in Chapter 11

The configure command must be run in the $CASEROOT directory and must be in-
voked with one of the following options:

configure [-help] [-case] \
[-cleanmach] [-cleannamelist] [-cleanall]

-case

sets up the case for build and run phases. It creates Buildconf/,
$CASE.$MACH.run, $CASE.$MACH.build, $CASE.$MACH.clean_build,
$CASE.$MACH.l_archive, directories and files in $CASEROOT.

-cleanmach

Moves all machine-related files to a date-stamped backup directory under
MachinesHist/. These files include: Macros.$MACH, $CASE.$MACH.build,
$CASE.$MACH.clean_build, $CASE.$MACH.l_archive, and $CASE.$MACH.run.
It also unlocks env_mach_pes.xml, Macros.$MACH, and env_build.xml, so
users can reset machine tasks and threads and rerun configure. Reconfiguring
with -cleanmach results in the loss of any local modifications to the local build
and run scripts. But the Buildconf/ directory will not be updated in this
process. As a result, local changes to namelists will be preserved.

If you only modify env_mach_pes.xml after running configure, do the follow-
ing:
> configure -cleanmach
> # Make changes to env_mach_pes.xml
> configure -case

-cleannamelist

Moves Buildconf/ to a date-stamped backup directory under MachinesHist/
and unlocks env_conf.xml. Reconfiguring with -cleannamelist results in the loss
of any local modifications to the Buildconf buildnml and buildexe files. But the
local build and run scripts will be preserved.

If you only want to modify env_conf.xml after running configure, do the fol-
lowing:

23



Chapter 3. Configuring a Case

> configure -cleannamelist
> # Make changes to env_conf.xml here
> configure -case

-cleanall

This performs the functions of both the -cleanmach and -cleannamelist options.
All files associated with the previous invocation of configure are moved to a
time-stamped directory in MachinesHist. The $CASEROOT directory will now
appear as if create_newcase had just been run with the exception that local mod-
ifications to the env_*.xml files are preserved. After further modifications are
made to env_conf.xml and env_mach_pes.xml, you must run configure -case
before you can build and run the model. Reconfiguring results in the loss of all
local modifications to the component buildnml or buildexe files in Buildconf as
well as the loss of all local modifications to the local build and run scripts.

-help

Lists all options with short descriptions.

Configure generates buildnml and buildexe scripts for each component in the Build-
conf directory. It also generates build, run, l_archive, and clean_build scripts in the
CASEROOT directory. These scripts are now sufficient to build and run the model.

Table 3-1. Result of invoking configure

File or Directory Description

Buildconf/ Contains scripts that generate
component libraries and utility libraries
(e.g., PIO, MCT) and scripts that
generate component namelists.

$CASE.$MACH.build Creates the component and utility
libraries and model executable (see
building CESM).

$CASE.$MACH.run Runs the CESM model and performs
short-term archiving of output data (see
running CESM). Contains the necessary
batch directives to run the model on the
required machine for the requested PE
layout.

$CASE.$MACH.l_archive Performs long-term archiving of output
data (see long-term archiving). This
script will only be created if long-term
archiving is available on the target
machine.

$CASE.$MACH.clean_build Removes all object files and libraries
and unlocks Macros.$MACH and
env_build.xml. This step is required
before a clean build of the system.

env_derived Contains environmental variables
derived from other settings. Should not
be modified by the user.

Customizing the configuration
Before calling configure, first customize the default configuration. To customize the
default configuration, modify env_conf.xml and env_mach_pes.xml before invoking

24



Chapter 3. Configuring a Case

configure. The env_build.xml and env_run.xml files can also be changed at this
step.

env_mach_pes.xml contains variables that determine the layout of the components
across the hardware processors. Those variables specify the number of processors for
each component and determine the layout of components across the processors used.
See env_mach_pes.xml variables for a summary of all env_mach_pes.xml variables.

env_conf.xml contains several different kinds of variables including variables for
case initialization, variables that specify the regridding files, and variables that
set component-specific namelists and component-specific CPP variables. See
env_conf.xml variables for a summary of all env_conf.xml variables.

Setting the case PE layout
Optimizing the throughput or efficiency of a CESM experiment often involves cus-
tomizing the processor (PE) layout for load balancing. The component PE layout is
set in env_mach_pes.xml.

CESM1 has significant flexibility with respect to the layout of components across dif-
ferent hardware processors. In general, its CESM components -- atm, lnd, ocn, ice,
glc, and cpl -- can run on overlapping or mutually unique processors. Each compo-
nent is associated with a unique MPI communicator. In addition, the driver runs on
the union of all processors and controls the sequencing and hardware partitioning.
The processor layout for each component is specified in the env_mach_pes.xml file
via three settings: the number of MPI tasks, the number of OpenMP threads per task,
and the root MPI processor number from the global set.

For example, these settings in env_mach_pes.xml:

<entry id="NTASKS_OCN" value="128" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="0" />

cause the ocean component to run on 128 hardware processors with 128 MPI tasks
using one thread per task starting from global MPI task 0 (zero).

In this next example:

<entry id="NTASKS_ATM" value="16" />
<entry id="NTHRDS_ATM" value="4" />
<entry id="ROOTPE_ATM" value="32" />

the atmosphere component will run on 64 hardware processors using 16 MPI tasks
and 4 threads per task starting at global MPI task 32. There are NTASKS, NTHRDS,
and ROOTPE input variables for every component in env_mach_pes.xml. There are
some important things to note.

• NTASKS must be greater or equal to 1 (one) even for inactive (stub) components.

• NTHRDS must be greater or equal to 1 (one). If NTHRDS is set to 1, this generally
means threading parallelization will be off for that component. NTHRDS should
never be set to zero.

• The total number of hardware processors allocated to a component is NTASKS *
NTHRDS.

• The coupler processor inputs specify the pes used by coupler computation such
as mapping, merging, diagnostics, and flux calculation. This is distinct from the
driver which always automatically runs on the union of all processors to manage
model concurrency and sequencing.

• The root processor is set relative to the MPI global communicator, not the hardware
processors counts. An example of this is below.

25



Chapter 3. Configuring a Case

• The layout of components on processors has no impact on the science. The scien-
tific sequencing is hardwired into the driver. Changing processor layouts does not
change intrinsic coupling lags or coupling sequencing. ONE IMPORTANT POINT
is that for a fully active configuration, the atmosphere component is hardwired
in the driver to never run concurrently with the land or ice component. Perfor-
mance improvements associated with processor layout concurrency is therefore
constrained in this case such that there is never a performance reason not to over-
lap the atmosphere component with the land and ice components. Beyond that
constraint, the land, ice, coupler and ocean models can run concurrently, and the
ocean model can also run concurrently with the atmosphere model.

• If all components have identical NTASKS, NTHRDS, and ROOTPE set, all compo-
nents will run sequentially on the same hardware processors.

The root processor is set relative to the MPI global communicator, not the hardware
processor counts. For instance, in the following example:

<entry id="NTASKS_ATM" value="16" />
<entry id="NTHRDS_ATM" value="4" />
<entry id="ROOTPE_ATM" value="0" />
<entry id="NTASKS_OCN" value="64" />
<entry id="NTHRDS_OCN" value="1" />
<entry id="ROOTPE_OCN" value="16" />

the atmosphere and ocean are running concurrently, each on 64 processors with the
atmosphere running on MPI tasks 0-15 and the ocean running on MPI tasks 16-79.
The first 16 tasks are each threaded 4 ways for the atmosphere. The batch submission
script ($CASE.$MACH.run) should automatically request 128 hardware processors,
and the first 16 MPI tasks will be laid out on the first 64 hardware processors with a
stride of 4. The next 64 MPI tasks will be laid out on the second set of 64 hardware
processors.

If you set ROOTPE_OCN=64 in the preceding example, then a total of 176 processors
would have been requested and the atmosphere would have been laid out on the first
64 hardware processors in 16x4 fashion, and the ocean model would have been laid
out on hardware processors 113-176. Hardware processors 65-112 would have been
allocated but completely idle.

Note: env_mach_pes.xml cannot be modified after "configure -case" has been invoked
without first invoking "configure -cleanmach". For an example of changing pes, see the
Section called Changing PE layout in Chapter 9

Setting the case initialization type
The case initialization type is set in env_conf.xml. A CESM run can be initialized in
one of three ways; startup, branch, or hybrid. The variable $RUN_TYPE determines
the initialization type and is set to "startup" by default when create_newcase is
invoked. This setting is only important for the initial run of a production run
when the $CONTINUE_RUN variable is set to FALSE. After the initial run, the
$CONTINUE_RUN variable is set to TRUE, and the model restarts exactly using
input files in a case, date, and bit-for-bit continuous fashion.

RUN_TYPE

Run initialization type. Valid values: startup, hybrid, branch. Default: startup.

RUN_STARTDATE

Start date for the run in yyyy-mm-dd format. This is only used for startup or
hybrid runs.

26



Chapter 3. Configuring a Case

RUN_REFCASE

Reference case for hybrid or branch runs.

RUN_REFDATE

Reference date in yyyy-mm-dd format for hybrid or branch runs.

This is a detailed description of the different ways that CESM initialization runs.

startup

In a startup run (the default), all components are initialized using baseline states.
These baseline states are set independently by each component and can include
the use of restart files, initial files, external observed data files, or internal ini-
tialization (i.e., a "cold start"). In a startup run, the coupler sends the start date
to the components at initialization. In addition, the coupler does not need an in-
put data file. In a startup initialization, the ocean model does not start until the
second ocean coupling (normally the second day).

branch

In a branch run, all components are initialized using a consistent set of
restart files from a previous run (determined by the $RUN_REFCASE and
$RUN_REFDATE variables in env_conf.xml). The case name is generally
changed for a branch run, although it does not have to be. In a branch run,
setting $RUN_STARTDATE in env_conf.xml is ignored because the model
components obtain the start date from their restart datasets. Therefore, the start
date cannot be changed for a branch run. This is the same mechanism that is
used for performing a restart run (where $CONTINUE_RUN is set to TRUE in
the env_run.xml file).

Branch runs are typically used when sensitivity or parameter studies are re-
quired, or when settings for history file output streams need to be modified
while still maintaining bit-for-bit reproducibility. Under this scenario, the new
case is able to produce an exact bit-for-bit restart in the same manner as a con-
tinuation run if no source code or component namelist inputs are modified.
All models use restart files to perform this type of run. $RUN_REFCASE and
$RUN_REFDATE are required for branch runs.

To set up a branch run, locate the restart tar file or restart directory for
$RUN_REFCASE and $RUN_REFDATE from a previous run, then place those
files in the $RUNDIR directory. See setting up a branch run for an example.

hybrid

A hybrid run indicates that CESM will be initialized more like a startup,
but will use initialization datasets from a previous case. This is somewhat
analogous to a branch run with relaxed restart constraints. A hybrid run allows
users to bring together combinations of initial/restart files from a previous
case (specified by $RUN_REFCASE) at a given model output date (specified
by $RUN_REFDATE). Unlike a branch run, the starting date of a hybrid run
(specified by $RUN_STARTDATE) can be modified relative to the reference
case. In a hybrid run, the model does not continue in a bit-for-bit fashion with
respect to the reference case. The resulting climate, however, should be
continuous provided that no model source code or namelists are changed in the
hybrid run. In a hybrid initialization, the ocean model does not start until the
second ocean coupling (normally the second day), and the coupler does a "cold
start" without a restart file.

27



Chapter 3. Configuring a Case

Setting component-specific variables
To understand how the component-specific variables in env_conf.xml (e.g.,
CAM_CONFIG_OPTS) are used to set compile and namelist settings for that
component, you first need to understand how configure uses the variables in
env_conf.xml to create the files in Buildconf/.

In each $CASEROOT directory, the subdirectory $CASEROOT/Tools/Templates
contains files of the form $component[.cpl7].template, where $component
corresponds to each of the model components that is part of the selected
component set. The .cpl7 appears in some templates and not in others. configure
translates the $env_*.xml xml variables to csh environment variables, and each
of the component template scripts uses those environment variables to create
Buildconf/$component.buildexe.csh (which creates the component library) and
Buildconf/$component.buildnml.csh (which creates the component namelist).

configure
⇓

Tools/Templates/$component.cpl7.template
⇓

Buildconf/$component.buildexe.csh
Buildconf/$component.buildnml.csh

When the model run is submitted, $CASE.$MACH.run will call
Buildconf/$component.buildnml.csh to produce the run-time component
namelists:

$CASE.$MACH.run
⇓

Buildconf/$component.buildnml.csh
⇓

$RUNDIR/$model_in

As an example, for CAM

$CASE.$MACH.run
⇓

Buildconf/cam.buildnml.csh
⇓

$RUNDIR/atm_in

Important:: Component namelists should normally be set using env_conf.xml
variables (see below). If a namelist needs to be modified after configure is called,
then this should be done in Buildconf/$component.buildnml.csh. Note that if
configure -cleanall or configure -cleannamelist is called, then any local changes to
Buildconf/$component.buildnml.csh will be lost.

The discussions in the sections below assume the following:

• References to $component.cpl7.template refer to
Tools/Templates/$component.cpl7.template

• References to $component.buildexe.csh and $component.buildnml.csh
refer to Buildconf/$component.buildexe.csh and
Buildconf.$component.buildnml.csh.

CAM variables
The following are CAM-specific env_conf.xml variables

CAM’s configure utility1 is invoked by cam.cpl7.template as:

28



Chapter 3. Configuring a Case

configure
⇓

Tools/Templates/cam.cpl7.template
⇓

$CCSMROOT/models/atm/cam/bld/configure \
-ccsm_seq -ice none -ocn none -spmd \
-dyn $CAM_DYCORE -res $ATM_GRID \
$CAM_CONFIG_OPTS \

...
⇓

camconf/
# Do Not Modify contents of camconf/

⇓
Buildconf/cam.buildexe.csh

Note that $CAM_DYCORE and $ATM_GRID are env_conf.xml and env_case.xml
variables, respectively.

CAM’s build-namelist utility2 is invoked by cam.cpl7.template as:

configure
⇓

Tools/Templates/cam.cpl7.template
⇓

$CCSMROOT/models/atm/cam/bld/build-namelist \
-use_case $CAM_NML_USE_CASE \
-namelist "$CAM_NAMELIST_OPTS /"
...
⇓

camconf/
# Do Not Modify contents of camconf/

⇓
Buildconf/cam.buildnml.csh

The following env_conf.xml variables are used by CAM to invoke its configure and
build-namelist utilities.

CAM_CONFIG_OPTS

Provides option(s) for CAM’s configure utility (see above).
CAM_CONFIG_OPTS are normally set as compset variables (e.g., "-phys
cam4 -chem waccm_mozart") and in general should not be modified for
supported compsets. Recommendation: If you want to modify this value for
your experiment, use your own (user-defined component sets).

CAM_NML_USE_CASE

Provides the use_case option for CAM’s build-namelist utility (see above).
CAM’s build-namelist leverages groups of namelist options (use cases) that
are often paired with CAM’s configure options. These use cases are xml files
located in $CCSMROOT/models/atm/cam/bld/namelist_files/use_cases.
In general, this variable should not be modified for supported compsets.
Recommendation: If you want to modify this value for your experiment, use
your own (user-defined component sets.

CAM_NAMELIST_OPTS

Provides options to the -namelist argument in CAM’s build-namelist utility (see
above).

This serves to specify namelist settings directly on the command line by sup-
plying a string containing Fortran namelist syntax. The resulting namelist will
appear in cam.buildnml.csh.

29



Chapter 3. Configuring a Case

Note: To insert a single quotation mark (apostrophe) when setting
CAM_NAMELIST_OPTS, use the string "&apos;". Also note that the "$" symbol
should not be used in CAM_NAMELIST_OPTS.

This example shows how to use xmlchange to set CAM_NAMELIST_OPTS:
xmlchange -id CAM_NAMELIST_OPTS\

-val ncdata=&apos;cam_0.9x1.25.1860.nc&apos;

If you want to modify numerous cam namelist values, you can use an alternate
scheme: Place a file user_nl_cam containing modified cam namelist settings in
$CASEROOT. For example, user_nl_cam could contain the following:

&camexp
solar_const = 1363.27
ch4vmr = 1860.0e-9
nhtfrq = -24

/

and the above settings would appear in cam.buildnml.csh.

CLM variables
The following are CLM-specific env_conf.xml variables

CLM’s configure utility 3 is invoked by clm.cpl7.template as:

configure -case
⇓

Tools/Templates/clm.cpl7.template
⇓

$CCSMROOT/models/lnd/clm/bld/configure \
-mode ext_ccsm_seq \
-comp_intf cpl_$COMP \
-usr_src $CASEROOT/SourceMods/src.clm \
$CLM_CONFIG_OPTS
...
⇓

clmconf/
# Do Not Modify contents of clmconf/

⇓
Buildconf/clm.buildexe.csh

CLM’s build-namelist utility 4 is also invoked by clm.cpl7.template as:

configure -case
⇓

Tools/Templates/clm.cpl7.template
⇓

$CCSMROOT/lnd/clm/bld/build-namelist
-clm_usr_name $CLM_USRDAT_NAME \
-res $LND_GRID -mask $OCN_GRID \
-clm_start_type $START_TYPE
-use_case $CLM_NML_USE_CASE
-namelist "&clm_inparm $CLM_NAMELIST_OPTS /"
...
⇓

clmconf/
# Do Not Modify contents of clmconf/

⇓
Buildconf/clm.buildnml.csh

30



Chapter 3. Configuring a Case

Note: Confusion can arise here. CLM supports the values of default, cold, arb_ic, and
startup for the -clm_start_type argument. A value of cold implies always starting with
arbitrary initial conditions. A value of arb_ic implies starting with arbitrary initial conditions
if initial conditions do not exist. A value of startup implies that initial conditions must be
used, and the configure -case will abort if one isn’t provided (either from the CLM XML
namelist database, or entered with CLM_NAMELIST_OPTS or user_nl_clm). If "default"
is entered, the CLM build-namelist will determine the setting based on the resolution.

$START_TYPE (above) is a derived variable in clm.cpl7.template. For a
hybrid run, $START_TYPE is set to "startup", otherwise it is set to "default" unless
$$CLM_FORCE_COLDSTART is set to "on", in which case is it set to "cold". It is
unfortunate that the name "startup" is the same as the name used for initializing a CESM
run, because in this case it means something very different.

CLM_CONFIG_OPTS

Provides option(s) for CLM’s configure utility (see above).
CLM_CONFIG_OPTS are normally set as compset variables (e.g., -bgc cn).

Do not modify this variable. If you want to modify this for your experiment, use
your own (user-defined component sets).

This is an advanced flag and should only be used by expert users.

CLM_BLDNML_OPTS

Provides option(s) for CLM’s build-namelist utility (see above).

Do not modify this variable. If you want to modify this for your experiment, use
your own (user-defined component sets).

This is an advanced flag and should only be used by expert users.

CLM_NAMELIST_OPTS

CLM-specific namelist settings for -namelist option in CLM’s build-namelist
(see above). We recommend that if you want to change the clm namelist
settings such as the initial dataset (finidat) or the history output defaults
(hist_nhtfrq) you either include a user_nl_clm or you manually edit the
resulting Buildconf/clm.buildnml.csh.

This is an advanced flag and should only be used by expert users.

CLM_FORCE_COLDSTART

Flag to CLM’s build-namelist to force CLM to do a cold start. Valid values are
on, off. The "on" value forces the model to spin up from a cold-start (arbitrary
initial conditions).

This is an advanced flag and should only be used by expert users.

CLM_USRDAT_NAME

Dataset name for user-created datasets. This is used as the argument to build-
namelist -clm_usr_name (see above). An example of such a dataset would be,
1x1pt_boulderCO_c090722. The default value is UNSET.

This is an advanced flag and should only be used by expert users.

CLM_PT1_NAME

Grid name when the CLM/ATM grid is a single point. This is used in I compsets
only.

This is an advanced flag and should only be used by expert users.

31



Chapter 3. Configuring a Case

CLM_CO2_TYPE

Determines how CLM will determine where CO
2

is set. If constant, it will be set
to CCSM_CO2_PPMV, if set otherwise, the atmosphere model MUST send it to
CLM. CLM_CO2_TYPE is normally set by the specific compset, since it HAS to
be coordinated with settings for the atmospheric model.

Do not modify this variable. If you want to modify for your experiment, use
your own (user-defined component sets).

This is an advanced flag and should only be used by expert users.

CLM_NML_USE_CASE

Determines the use-case that will be sent to the CLM build-namelist.
CLM_CO2_TYPE is normally set by the specific compset.

This is an advanced flag and should only be used by expert users.

CICE variables
The following are CICE-specific env_conf.xml variables

CICE’s configure utility5 is invoked by cice.cpl7.template as:

configure -case
⇓

Tools/Templates/cice.cpl7.template
⇓

$CCSMROOT/models/ice/cice/bld/configure \
-hgrid $ICE_GRID \
-mode $CICE_MODE \
$CICE_CONFIG_OPTS \
...
⇓

ciceconf/
# Do Not Modify contents of ciceconf/

⇓
Buildconf/cice.buildexe.csh

CICE’s build-namelist utility6 is invoked by cice.cpl7.template as:

configure -case
⇓

Tools/Templates/cice.cpl7.template
⇓

$CCSMROOT/ice/cice/bld/build-namelist
-namelist "&cice_inparm $CICE_NAMELIST_OPTS /"
...
⇓

ciceconf/
# Do Not Modify contents of ciceconf/

⇓
Buildconf/cice.buildnml.csh

CICE_MODE

Option to CICE’s configure utility for the -mode argument (see above). Valid
values are prognostic, prescribed, thermo_only. The default is prognostic.

CICE_CONFIG_OPTS

Provides option(s) for CICE’s configure utility (see above). Default value is "-
ntr_aero 3".

32



Chapter 3. Configuring a Case

CICE_NAMELIST_OPTS

CICE-specific namelist settings for -namelist option (see above).

In addition, $CASEROOT/configure also generates the CICE’s block decomposition
in env_build.xml as follows (also see env_build.xml variables ):

configure -case
⇓

$NTASKS_ICE and $NTHRDS_ICE
⇓

Tools/Templates/generate_cice_decomp.xml
⇓

Tools/Templates/cice_decomp.xml
⇓

sets env_build.xml CICE_BLCKX
sets env_build.xml CICE_BLCKY
sets env_build.xml CICE_MXBLCKS
sets env_build.xml CICE_DECOMPTYPE

⇓
CPP variables in cice.buildexe.csh

POP2 variables
The following are POP2-specific env_conf.xml variables

POP2’s namelist construction utility7 is invoked by pop2.cpl7.template in the fol-
lowing sequence:

configure -case
⇓

Tools/Templates/pop2.cpl7.template
⇓

$CCSMROOT/models/ocn/pop2/input_templates/pop2_in_build.csh
$CCSMROOT/models/ocn/pop2/input_templates/ocn.*.setup.csh

⇓
Buildconf/pop2.buildnml.csh

POP2’s script to generate the ocn binary library is created directly from
pop2.cpl7.template:

configure -case
⇓

Tools/Templates/pop2.cpl7.template
⇓

Buildconf/pop2.buildexe.csh

In addition, configure also generates POP2’s block decomposition in
env_build.xml as follows (also see env_build.xml variables ):

configure -case
⇓

$NTASKS_OCN and $NTHRDS_OCN
⇓

Tools/Templates/generate_pop_decomp.xml
⇓

Tools/Templates/pop_decomp.xml
⇓

sets env_build.xml POP_BLCKX
sets env_build.xml POP_BLCKY
sets env_build.xml POP_MXBLCKS
sets env_build.xml POP_DECOMPTYPE

⇓
CPP variables in pop2.buildexe.csh

33



Chapter 3. Configuring a Case

The following variables are used by the POP2 scripts to generate the settings used in
your $CASE.

OCN_CHL_TYPE

Determine provenance of surface Chl for radiative penetration computations.
Valid values are diagnostic, prognostic. The default is diagnostic. This option
is used in the POP2 ecosystem model, which will be available in the CESM1.0
release.

OCN_CO2_TYPE

Determine provenance of atmospheric CO2 for gas flux computation. Valid val-
ues are constant, prognostic. The default is constant. This option is used in the
POP2 ecosystem model, which will be available in the CESM1.0 release.

OCN_COUPLING

Determine surface freshwater and heat forcing settings. Valid values are full,
partial. The full option yields settings that are appropriate for coupling to an
active atmospheric model (e.g., a B-type compset). The partial option yields set-
tings that are appropriate for coupling to a data atmospheric model (e.g., a C or
G-type compset). The create_newcase command selects the appropriate setting
for this variable based on the specified compset. Users should not change this
setting.

OCN_ICE_FORCING

Determine under-ice forcing settings. Valid values are active, inactive. The active
option yields settings that are appropriate for coupling to an active ice model
(e.g., a B or G-type compset). The inactive option yields settings that are ap-
propriate for coupling to a data ice model (e.g., a C-type compset). The cre-
ate_newcase command selects the appropriate setting for this variable based on
the specified compset. Users should not change this setting.

OCN_TRANSIENT

Determine settings for transient forcing datasets (e.g., atmospheric pCFC con-
centrations). Valid values are unset, 1850-2000. The create_newcase command
selects the appropriate setting for this variable based on the specified compset.
Users should not change this setting. This option is used in the POP2 ecosystem
model, which will be available in the CESM1.0 release.

CISM variables
CISM creates a script to generate the glc binary library directly from
cism.cpl7.template:

configure -case
⇓

Tools/Templates/cism.cpl7.template
⇓

Buildconf/cism.buildexe.csh

The file cism.cpl7.template is also used to generate CISM’s script to build its
namelist:

configure -case
⇓

Tools/Templates/cism.cpl7.template
⇓

Buildconf/cism.buildnml.csh

34



Chapter 3. Configuring a Case

The following are CISM-specific env_conf.xml variables

GLC_GRID

Determines the specific local GLC grid CISM will use for internal calculations.
Current valid values are gland20, gland10, and gland5 The default is gland20.

DATM variables
The following are DATM-specific env_conf.xml variables

DATM is discussed in detail in Data Model’s User’s Guide8. DATM is normally
used to provide observational forcing data (or forcing data produced by a previous
run using active components) to drive CLM (I compset), POP2 (C compset), and
POP2/CICE (G compset). As a result, DATM variable settings are specific to the
compset that will be targeted.

DATM uses the datm.cpl7.template as follows:

configure
⇓

Tools/Templates/datm.cpl7.template
⇓

Buildconf/datm.builexe.csh

and

configure
⇓

Tools/Templates/datm.cpl7.template
⇓

$CCSMROOT/scripts/ccsm_utils/build_streams
⇓

Buildconf/datm.buildml.csh

The following are CESM environment variables that are used by
datm.cpl7.template:

DATM_MODE

Mode for data atmosphere component (datm). Valid values are CORE2_NYF,
CLM_QIAN, CLM1PT, and CPLHIST3HrWx. The default is CORE2_NYF.

CORE2_NYF (CORE2 normal year forcing) is the DATM mode used in C and G
compsets.

CLM_QIAN and CLM1PT are DATM modes using observational data for forc-
ing CLM in I compsets. CPLHIST3HrWx is to run with coupler history forcing
from a previous simulation.

DATM_PRESAERO

Sets the prescribed aerosol mode for the data atmosphere model. If "none"
aerosols will NOT be sent from the datm, otherwise the datasets corresponding
to the given mode will be used.

Valid values are: none, clim_1850, clim_2000, trans_1850-2000, rcp2.6, rcp4.5,
rcp8.5, pt1_pt1. Default value is none (although most compsets override this)

DATM_CLMNCEP_YR_ALIGN

For I compset only. Year align (simulation year corresponding to starting year)
for CLM_QIAN mode. Default value is 1.

35



Chapter 3. Configuring a Case

DATM_CLMNCEP_YR_START

For I compset only. Starting year to loop data over for CLM_QIAN mode. Default
value is 2004.

DATM_CLMNCEP_YR_END

For I compset only. Ending year to loop data over for CLM_QIAN mode. Default
value is 2004.

DATM_CPL_CASE

For CPLHIST3HrWx DATM_MODE only, the I_1850_SPINUP_3HrWx_CN
compset invokes this mode. This is the casename to use for coupler history
forcing of DATM. Default case is b40.20th.track1.1deg.012 a 20th-Century
transient case, for CPLHIST3HrWx compset otherwise UNSET.

DATM_CPL_YR_ALIGN

For CPLHIST3HrWx DATM_MODE only, the I_1850_SPINUP_3HrWx_CN
compset invokes this mode. Year align (simulation year corresponding to
starting year) for CPL history mode. Default is 1, for CPLHIST3HrWx compset
otherwise -999 (unused).

DATM_CPL_YR_START

For CPLHIST3HrWx DATM_MODE only, the I_1850_SPINUP_3HrWx_CN
compset invokes this mode. Starting year to loop CPL history data over. Default
is 1850, for CPLHIST3HrWx compset otherwise -999 (unused).

DATM_CPL_YR_END

For CPLHIST3HrWx DATM_MODE only, the I_1850_SPINUP_3HrWx_CN
compset invokes this mode. Ending year to loop CPL history data over. Default
is 1950, for CPLHIST3HrWx compset otherwise -999 (unused).

DLND variables
The following are DLND-specific env_conf.xml variables

DLND is discussed in detail in Data Model’s User’s Guide9. The data land model is
different from the other data models because it can run as a purely data-runoff model
(reading in runoff data), or as a purely data-land model (reading in coupler history
data for atm/land fluxes and land albedos produced by a previous run), or both. In
general, the data land model is only used to provide runoff forcing data to POP2
when running C or G compsets.

DLND uses the datm.cpl7.template as follows:

configure
⇓

Tools/Templates/dlnd.cpl7.template
⇓

Buildconf/dlnd.builexe.csh

and

configure
⇓

Tools/Templates/dlnd.cpl7.template
⇓

$CCSMROOT/scripts/ccsm_utils/build_streams
⇓

Buildconf/dlnd.buildml.csh

36



Chapter 3. Configuring a Case

The following are variables that are used by dlnd.cpl7.template.

DLND_MODE

DLND mode. Valid values are CPLHIST and NULL. In CPLHIST mode, land
forcing data (produced by CLM) from a previous model run is output in coupler
history files and read in by the data land model. In NULL mode, land forcing is
set to zero and not utilized. The default is NULL.

DLND_RUNOFF_MODE

DLND_RUNOFF mode. Valid values are CPLHIST, RX1, and NULL. In RX1
mode, observational 1-degree runoff data is used. In CPLHIST mode, runoff data
from a previous model run is read in. In NULL mode, the runoff data is set to
zero. In CPLHIST mode, land forcing data from a previous model run is output
by the coupler and read in by the data land model. In NULL mode, land forcing
is set to zero and not used. The default is RX1.

DICE variables
The following are DICE-specific env_conf.xml variables

DICE is discussed in detail in Data Model’s User’s Guide10. DICE is a combination
of a data model and a prognostic model. The data functionality reads in ice cover-
age. The prognostic functionality calculates the ice/atmosphere and ice/ocean fluxes.
DICE receives the same atmospheric input from the coupler as the active CICE model
(i.e., atmospheric states, shortwave fluxes, and ocean ice melt flux). DICE acts very
similarly to CICE running in prescribed mode.) Currently, this component is only
used to drive POP2 in C compsets.

DICE uses the dice.cpl7.template as follows:

configure
⇓

Tools/Templates/dice.cpl7.template
⇓

Buildconf/dice.builexe.csh

and

configure
⇓

Tools/Templates/dice.cpl7.template
⇓

$CCSMROOT/scripts/ccsm_utils/build_streams
⇓

Buildconf/dice.buildml.csh

The following are variables that are used by dice.cpl7.template.

DICE_MODE

DICE mode. Valid value is ssmi.

DOCN variables
The following are DOCN-specific env_conf.xml variables

The following are variables that are used by docn.cpl7.template.

DOCN is discussed in detail in Data Model’s User’s Guide11.

37



Chapter 3. Configuring a Case

The data ocean component (DOCN) always returns SSTs to the driver. In CESM, at-
mosphere/ocean fluxes are computed in the coupler. Therefore, the data ocean model
does not compute fluxes like the data ice model. DOCN has two distinct modes of
operation. It can run as a pure data model, reading in ocean SSTs (normally clima-
tological) from input datasets, performing time/spatial interpolations, and passing
these to the coupler. Alternatively, DOCN can compute updated SSTs by running as
a slab ocean model where bottom ocean heat flux convergence and boundary layer
depths are read in and used with the atmosphere/ocean and ice/ocean fluxes ob-
tained from the driver.

DOCN running in prescribed mode (in conjunction with CICE running in prescribed
mode) is used in all F component sets.

DOCN running as a slab ocean model is used (in conjunction with CICE running in
prognostic mode) in all E compsets.

For prescribed mode, default yearly climatological datasets are provided for
various model resolutions. For multi-year runs requiring AMIP datasets of
sst/ice_cov fields, you need to set the variables for DOCN_SSTDATA_FILENAME,
DOCN_SSTDATA_YEAR_START, and DOCN_SSTDATA_YEAR_END. CICE in
prescribed mode also uses these values.

DOCN uses the docn.cpl7.template as follows:

configure
⇓

Tools/Templates/docn.cpl7.template
⇓

Buildconf/docn.builexe.csh

and

configure
⇓

Tools/Templates/docn.cpl7.template
⇓

$CCSMROOT/scripts/ccsm_utils/build_streams
⇓

Buildconf/docn.buildml.csh

DOCN_MODE

DOCN mode. Valid values are prescribed, som. Default is prescribed.

DOCN_SSTDATA_FILENAME

Sets sst/ice_cov filename for AMIP runs, only used in F compset. Default is UN-
SET.

DOCN_SSTDATA_YEAR_START

Sets start year of sst/ice_cov for AMIP runs, only used in F compset. Default is
-999.

DOCN_SSTDATA_YEAR_END

Sets end year of sst/ice_cov for AMIP runs, only used in F compset. Default is
-999.

Driver/coupler variables
The following are CPL-specific env_conf.xml variables

38



Chapter 3. Configuring a Case

CPL_EPBAL

Provides EP balance factor for precip for POP2. A factor computed by POP2
is applied to precipitation so that precipitation balances evaporation and ocn
global salinity does not drift. This is intended for use when coupling POP2 to a
DATM. Only used for C and G compsets.

Valid values are off, ocn. Default is off.

CPL_ALBAV

If false, albedos are computed with the assumption that downward solar radia-
tion from the atm component has a diurnal cycle and zenith-angle dependence.
This is normally the case when using an active atm component.

If true, albedos are computed with the assumption that downward solar radia-
tion from the atm component is a daily average quantity and does not have a
zenith-angle dependence. This is often the case when using a data atm compo-
nent.

This is only used for C and G compsets. Valid values are true, false. Default is
false.

CCSM_BGC

If the value is not "none", the coupler is compiled so that optional BGC related
fields are exchanged between component models. Currently only "none" and
"CO2A" are supported. CO2A will activate sending diagnostic and prognostic
co2 from the atm component to the lnd component.

Valid values are: none, CO2A.

CCSM_VOC

If the value is "TRUE", the coupler is compiled so that optional Biogenic Volatile
Organic Compunds (VOC) related fields are exchanged between component
models (from the lnd component to the atmosphere component).

Valid values are: TRUE, FALSE. Default is FALSE

MAP_A2OF_FILE

atm-to-ocn mapping file for fluxes (currently first-order conservative).

MAP_A2OS_FILE

atm-to-ocn mapping file for states (currently bilinear).

MAP_O2AF_FILE

ocn-to-atm mapping file for fluxes (currently first-order conservative).

MAP_O2AS_FILE

ocn-to-atm mapping file for states (currently bilinear).

MAP_A2LF_FILE

atm-to-land mapping file for fluxes (currently first-order conservative).

MAP_A2LS_FILE

atm-to-land mapping file for states (currently bilinear).

MAP_R2O_FILE_R05

0.5-degree runoff-to-ocn mapping file.

39



Chapter 3. Configuring a Case

MAP_R2O_FILE_RX1

1-degree runoff-to-ocn mapping file.

MAP_R2O_FILE_R19

19-basin runoff-to-ocn mapping file.

Other variables
The following variables impact more than one component.

CCSM_CO2_PPMV

This set the namelist values of CO2 ppmv for CAM and CLM. This variables is
introduced to coordinate this value among multiple components.

Reconfiguring a Case
If env_conf.xml or env_mach_pes.xml variables need to be changed after configure
has been called, the case scripts will need to be reconfigured. To do this, run

> cd $CASEROOT
> configure -cleanall
> configure -case

This will update the buildnml and buildexe files in the Buildconf directory and
the case build and run scripts in the CASEROOT directory. If only variables in
env_conf.xml have change, clean and reconfigure just the files in Buildconf by doing

> cd $CASEROOT
> configure -cleannamelist
> configure -case

If only variables in env_mach_pes.xml have changed, clean and reconfigure the build
and run scripts by doing

> cd $CASEROOT
> configure -cleanmach
> configure -case

Note that the -cleanall option does a combination of the -cleannamelist and
-cleanmach options. Reconfiguring with -cleanall results in the loss of all local
modifications to the component buildnml or buildexe files in Buildconf as well as
the loss of all local modifications to the local build and run scripts.

Summary of Files in the Case Directory
This table summarizes the directories and files that are created by configure. For more
complete information about the files in the case directory, see the Section called What
are the directories and files in my case directory? in Chapter 11

Table 3-2. Result of invoking configure

File or Directory Description

40



Chapter 3. Configuring a Case

File or Directory Description
Buildconf/ Contains scripts that generate

component libraries and utility libraries
(e.g., PIO, MCT) and scripts that
generate component namelists.

$CASE.$MACH.build Creates the component and utility
libraries and model executable (see
building CESM).

$CASE.$MACH.run Runs the CESM model and performs
short-term archiving of output data (see
running CESM). Contains the necessary
batch directives to run the model on the
required machine for the requested PE
layout.

$CASE.$MACH.l_archive Performs long-term archiving of output
data (see long-term archiving). This
script will only be created if long-term
archiving is available on the target
machine.

$CASE.$MACH.clean_build Removes all object files and libraries
and unlocks Macros.$MACH and
env_build.xml. This step is required
before a clean build of the system.

env_derived Contains environmental variables
derived from other settings. Should not
be modified by the user.

Notes
1. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1/book1.html

2. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1/book1.html

3. http://www.cesm.ucar.edu/models/cesm1.0/clm/models/lnd/clm/doc/UsersGuide/book1.html

4. http://www.cesm.ucar.edu/models/cesm1.0/clm/models/lnd/clm/doc/UsersGuide/book1.html

5. http://www.cesm.ucar.edu/models/cesm1.0/cice/doc/index.html

6. http://www.cesm.ucar.edu/models/cesm1.0/cice/doc/index.html

7. http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/users/POPusers_main.html

8. http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html

9. http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html

10. http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html

11. http://www.cesm.ucar.edu/models/cesm1.0/data8/data8_doc/book1.html

41



Chapter 3. Configuring a Case

42



Chapter 4. Building a Case

After configuring a case, the model executable can be built by running
$CASE.$MACH.build which will:

1. create the component namelists in $RUNDIR ($EXEROOT/run) by calling the
Buildconf/ scripts $component.buildnml.csh.

2. check for the required input data sets and download missing data automati-
cally on local disk, and if successful proceed to the following steps.

3. create the necessary utility libraries by calling the Buildconf/ scripts
mct.buildlib, pio.buildlib and csm_share.buildlib.

4. create the necessary component libraries by calling the Buildconf/ scripts
$component.buildexe.csh.

5. create the model executable by calling the Buildconf/ scripts
ccsm.buildexe.csh.

Note: $CASEROOT/Tools/Makefile and $CASEROOT/Macros.$MACH are used to generate
all necessary utility and component libraries and the model executable.

A user does not need to change the default build settings to create the executable.
However, the CESM scripts provide the user with a great deal of flexibility in cus-
tomizing various aspects of the build process. It is therefore useful for a user to be-
come familiar with these in order to make optimal use of the system.

Input data
All active and data components use input datasets. A local disk needs to be pop-
ulated with input data in order to run CESMwith these components. For all ma-
chines, input data is provided as part of the release via data from a subversion in-
put data server. However, on supported machines (and some non-supported ma-
chines), data already exists in the default local-disk input data area (as specified by
$DIN_LOC_ROOT_CSMDATA (see below).

Input data is handled by the build process as follows:

• configure and buildnml scripts create listings of required component input
datasets in the Buildconf/$component.input_data_list files.

• &$CASE.$MACH.build; in the prestage step checks for the presence of the required
input data files in the root directory $DIN_LOC_ROOT_CSMDATA. If all required
data sets are found on local disk, then the build can proceed.

• If any of the required input data sets are not found, the build script will abort and
the files that are missing will be listed. At this point, you must obtain the required
data from the input data server using check_input_data with the -export option.

The following variables in env_run.xml determine where you should expect input
data to reside on local disk and how this input data will be handled during the run.

DIN_LOC_ROOT_CSMDATA

The root directory of CESM input data for the selected machine. Usually a shared
disk area.

43



Chapter 4. Building a Case

DIN_LOC_ROOT

The inputdata area used for the current case. Normally, this is set to
DIN_LOC_ROOT_CSMDATA but the system provides flexibility for a user to
specify a distinct directory. This might be needed on certain machines if the
user needs to have the input data reside in a special disk area associated with
the executable directory or the batch nodes, rather than in the default local disk
directory.

DIN_LOC_ROOT_CLMQIAN

CLM-specific root directory for CLM QIAN type input forcing data. This direc-
tory will only be used for I (CLM/DATM) compsets.

PRESTAGE_DATA

Allows the case input data root directory (DIN_LOC_ROOT) to differ from the
machine’s root input data directory (DIN_LOC_ROOT_CSMDATA).

If PRESTAGE_DATA is FALSE (the default) then DIN_LOC_ROOT will be set to
DIN_LOC_ROOT_CSMDATA.

If PRESTAGE_DATA is TRUE, then DIN_LOC_ROOT will be
set to EXEROOT/inputdata. In addition, data will be copied from
DIN_LOC_ROOT_CSMDATA to DIN_LOC_ROOT before the model builds.
The input data in EXEROOT/inputdata will then be used for the model run.

User-created input data
If you want to use new user-created dataset(s), give these dataset(s) names that
are different than the names in $DIN_LOC_ROOT. The best way to access these
user-specified datasets is to use the script $CCSMROOT/scripts/link_dirtree.
link_dirtree creates a virtual copy of the input data directory by linking one
directory tree to another. The full directory structure of the original directory is
duplicated and the files are linked. Invoke the following for usage:

> cd $CCSMROOT/scripts
> link_dirtree -h

link_dirtree can be conveniently used to generate the equivalent of a local
copy of $DIN_LOC_ROOT_CSMDATA which can then be populated with
user-specified input datasets. For example, you can first generate a virtual copy
of $DIN_LOC_ROOT_CSMDATA in /user/home/newdata with the following
command:

> link_dirtree $DIN_LOC_ROOT_CSMDATA /user/home/newdata

then incorporate the new dataset(s) directly into the appropriate directory in
/user/home/newdata.

Important:: If you place a new dataset for $component in
/user/home/newdata, then Buildconf/$component.buildnml.csh and
Buildconf/$component.input_data_list must be modified to point to this new
dataset.

Using the input data server
The script $CASEROOT/check_input_data determines if the required data
files for the case exist on local disk in the appropriate subdirectory of
$DIN_LOC_ROOT_CSMDATA. If any of the required datasets do not exist

44



Chapter 4. Building a Case

locally, check_input_data provides the capability for downloading them to the
$DIN_LOC_ROOT_CSMDATA directory hierarchy via interaction with the input
data server. You can independently verify that the required data is present locally by
using the following commands:

> cd $CASEROOT
> check_input_data -help
> check_input_data -inputdata $DIN_LOC_ROOT_CSMDATA -check

If input data sets are missing, you must obtain the datasets from the input data server:

> cd $CASEROOT
> check_input_data -inputdata $DIN_LOC_ROOT_CSMDATA -export

Required data files not on local disk will be downloaded through interaction with
the Subversion input data server. These will be placed in the appropriate subdirec-
tory of $DIN_LOC_ROOT_CSMDATA. For what to expect when interacting with a
Subversion repository, see downloading input data.

Build-time variables
The env_build.xml file sets variables that control various aspects of building the
model executable. Most of the variables should not be modified by users. The vari-
ables that you can modify are discussed in more detail below.

EXEROOT

The CESM executable root directory. This is where the model builds its exe-
cutable and by default runs the executable. Note that $EXEROOT needs to have
enough disk space for the experimental configuration requirements. As an ex-
ample, CESM can produce more than a terabyte of data during a 100-year run,
so you should set $EXEROOT to scratch or tmp space and frequently back up
the data to a mass storage device.

RUNDIR

The directory where the executable will be run. By default this is set to
$EXEROOT/run. RUNDIR allows you to keep the run directory separate from
the build directory.

BUILD_THREADED

Valid values are TRUE and FALSE. The default is FALSE.

If FALSE, the component libraries are built with OpenMP capability only if the
NTHREADS_ setting for that component is greater than 1 in env_mach_pes.xml.

If TRUE, the component libraries are always built with OpenMP capability.

DEBUG

Flag to turn on debugging for run time and compile time. Valid values are TRUE,
FALSE. The default is FALSE.

If TRUE, compile-time debugging flags are activated that you can use to verify
software robustness, such as bounds checking.

Important:: On IBM machines, floating point trapping is not activated for production
runs (i.e., non-DEBUG), due to performance penalties associated with turning on
these flags.

45



Chapter 4. Building a Case

GMAKE_J

Number of processors for gmake (integer). 0 < GMAKE_J < [number of proces-
sors/node]. $GMAKE_J allows a faster build on multi-processor machines. If the
build fails in different places without other changes, setting this to 1 may help.

OCN_TRACER_MODULES

A POP2-specific setting for turning on different ocean tracer modules. Valid val-
ues are any combination of: iage, cfc, ecosys.

Compiler settings
Compiler settings are located in the two files env_mach_specific and
Macros.$MACH. The env_mach_specific file is a shell script that sets various
machine specific configure options such as modules and MPI or system environment
variables. This script is run as part of every build or run step, and accounts for
settings not included in the CESM xml env files. The Macros.$MACH file contains the
machine specific build options used in the CESM Makefile. Both of these files are
usually involved in defining build options, and the env_mach_specific file might
also contain critical settings for the run phase.

If you are running at NCAR, env_mach_specific also contains variables to set up mass
storage archiving. You need to modify these if you activate long-term archiving on
the mass store.

You need to modify these files for user-defined machines during the process of port-
ing CESM to your machine.

User-modified source code
Each model component ($component) has an associated directory,
$CASEROOT/SourceMods/src.$component, where you can place modified
source code before building the executable. Any source code from
$component that is placed in $CASEROOT/SourceMods/src.$component/ will
automatically be compiled when the model is built and will overwrite the
default source code. For example, placing user-modifed cam source code in
$CASEROOT/SourceMods/src.cam will cause the user-modified routines to be used
instead of the routines in $CCSMROOT/models/atm/cam.

If you want to modify numerous cam namelist values, you can use place a file,
user_nl, containing modified cam namelist settings in SourceMods/src.cam and
this file will be used by the configure -case; command to generate the appropriate
namelist for CAM.

Building the executable
After customizing your build options, and adding any user-modified source code,
you are ready to build the case executable.

> cd $CASEROOT
> $CASE.$MACH.build

Diagnostic comments will appear as the build proceeds.

The following line indicates that the component namelists have been generated suc-
cessfully:

46



Chapter 4. Building a Case

....
CCSM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY
....

When the required case input data in $DIN_LOC_ROOT has been successfully
checked, you will see:

CCSM PRESTAGE SCRIPT STARTING
...
...
CCSM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY

Finally, the build script generates the utility and component libraries and the model
executable. There should be a line for the mct and pio libraries, as well as each of the
components. Each is date stamped, and a pointer to the build log file for that library
or component is created. Successful completion is indicated by:

CCSM BUILDEXE SCRIPT HAS FINISHED SUCCESSFULLY

The build log files have names of the form $model.bldlog.$datestamp and are located
in $RUNDIR. If they are compressed (indicated by a .gz file extension), then the build
ran successfully.

Invoking $CASE.$MACH.build creates the following directory structure in
$EXEROOT:

$EXEROOT/atm
$EXEROOT/ccsm
$EXEROOT/cpl
$EXEROOT/csm_share
$EXEROOT/glc
$EXEROOT/ice
$EXEROOT/lib
$EXEROOT/lnd
$EXEROOT/mct
$EXEROOT/ocn
$EXEROOT/pio
$EXEROOT/run

The atm/, ccsm/, cpl/, glc/, ice/, lnd/, and ocn/ subdirectories each contain an
’obj/’ directory where the compiled object files for the model component is placed.
These object files are collected into libraries that are placed in ’lib/’ along with the
mct/mpeu, pio, and csm_share libraries. Special include modules are also placed in
lib/include. The model executable ’ccsm.exe’ is placed in $EXEROOT/run along with
component namelists. During the model run, component logs, output datasets, and
restart files are also placed in this directory.

Rebuilding the executable
The model should be rebuilt under the following circumstances:

If env_conf.xml, env_build.xml or $Macros.$MACH has been modified, and/or if
code is added to SourceMods/src.*, then it’s safest to clean the build and rebuild
from scratch as follows,

> cd $CASEROOT
> $CASE.$MACH.clean_build
> $CASE.$MACH.build

If ONLY the PE layout has been modified in env_mach_pes.xml (see setting the PE
layout) then it’s possible that a clean is not required.

> cd $CASEROOT

47



Chapter 4. Building a Case

> $CASE.$MACH.build

But if the threading has been turned on or off in any component relative to the previ-
ous build, then the build script should error as follows

ERROR SMP STATUS HAS CHANGED
SMP_BUILD = a0l0i0o0g0c0
SMP_VALUE = a1l0i0o0g0c0
A manual clean of your obj directories is strongly recommendend
You should execute the following:
./b39pA1.yellowstone.clean_build

Then rerun the build script interactively
---- OR ----
You can override this error message at your own risk by executing
./xmlchange -file env_build.xml -id SMP_BUILD -val 0

Then rerun the build script interactively

and suggest that the model be rebuilt from scratch.

Note: The user is responsible for manually rebuilding the model when needed. If there is
any doubt, you should rebuild.

48



Chapter 5. Running a case

To run a case, the user must submit the batch script $CASE.$MACH.run. In addition,
the user needs to also modify env_run.xml for their particular needs.

env_run.xml contains variables which may be modified during the course of a model
run. These variables comprise coupler namelist settings for the model stop time,
model restart frequency, coupler history frequency and a flag to determine if the
run should be flagged as a continuation run. In general, the user needs to only set
the variables $STOP_OPTION and $STOP_N. The other coupler settings will then be
given consistent and reasonable default values. These default settings guarantee that
restart files are produced at the end of the model run.

Customizing runtime settings
As mentioned above, variables that control runtime settings are found in
env_run.xml. In the following, we focus on the handling of run control (e.g. length
of run, continuing a run) and output data. We also give a more detailed description
of CESM restarts.

Setting run control variables
Before a job is submitted to the batch system, the user needs first check that the batch
submission lines in $CASE.$MACH.run are appropriate. These lines should be checked
and modified accordingly for appropriate account numbers, time limits, and std-
out/stderr file names. The user should then modify env_run.xml to determine the
key run-time settings, as outlined below:

CONTINUE_RUN

Determines if the run is a restart run. Set to FALSE when initializing a startup,
branch or hybrid case. Set to TRUE when continuing a run. (logical)

When you first begin a branch, hybrid or startup run, CONTINUE_RUN must
be set to FALSE. When you successfully run and get a restart file, you will need
to change CONTINUE_RUN to TRUE for the remainder of your run. Details of
performing model restarts are provided below.

RESUBMIT

Enables the model to automatically resubmit a new run. To get multiple runs,
set RESUBMIT greater than 0, then RESUBMIT will be decremented and the
case will be resubmitted. The case will stop automatically resubmitting when
the RESUBMIT value reaches 0.

Long CESM runs can easily outstrip supercomputer queue time limits. For this
reason, a case is usually run as a series of jobs, each restarting where the previous
finished.

STOP_OPTION

Ending simulation time.

Valid values are: [none, never, nsteps, nstep, nseconds, nsecond, nminutes,
nminute, nhours, nhour, ndays, nday, nmonths, nmonth, nyears, nyear, date,
ifdays0, end] (char)

STOP_N

Provides a numerical count for $STOP_OPTION. (integer)

49



Chapter 5. Running a case

STOP_DATE

Alternative yyyymmdd date option, negative value implies off. (integer)

REST_OPTION

Restart write interval.

Valid values are: [none, never, nsteps, nstep, nseconds, nsecond, nminutes,
nminute, nhours, nhour, ndays, nday, nmonths, nmonth, nyears, nyear, date,
ifdays0, end] (char)

Alternative yyyymmdd date option, negative value implies off. (integer)

REST_N

Number of intervals to write a restart. (integer)

REST_DATE

Model date to write restart, yyyymmdd

STOP_DATE

Alternative yyyymmdd date option, negative value implies off. (integer)

By default,

STOP_OPTION = ndays
STOP_N = 5
STOP_DATE = -999

The default setting is only appropriate for initial testing. Before a longer run is
started, update the stop times based on the case throughput and batch queue
limits. For example, if the model runs 5 model years/day, set RESUBMIT=30,
STOP_OPTION= nyears, and STOP_N= 5. The model will then run in five year
increments, and stop after 30 submissions.

CESM Input/Output
Each CESM component produces its own output datasets consisting of history, restart
and output log files. Component history files are in netCDF format whereas compo-
nent restart files may be in netCDF or binary format and are used to either exactly
restart the model or to serve as initial conditions for other model cases.

Most CESM component IO is handled by the Parallel IO library.1 This library is con-
troled by settings in the file env_run.xml For each of these settings described below
there is also a component specific setting that can be used to override the CESM wide
default. A value of -99 in these component specific variables indicates that the default
CESM wide setting will be used. If an out of range value is used for any component
the model will revert to a suitable default. The actual values used for each component
are written to the cesm.log file near the beginning of the model run.

PIO_NUMTASKS

Sets the number of component tasks to be used in the interface to lower level
IO components, -1 indicates that the library will select a suitable default value.
Using a larger number of IO tasks generally reduces the per task memory re-
quirements but may reduce IO performance due to dividing data into blocksizes
which are suboptimal. Note the the OCN_PIO_NUMTASKS overrides the sys-
tem wide default value in most configurations.

50



Chapter 5. Running a case

ATM_PIO_NUMTASKS, CPL_PIO_NUMTASKS, GLC_PIO_NUMTASKS,
ICE_PIO_NUMTASKS, LND_PIO_NUMTASKS, OCN_PIO_NUMTASKS

Component specific settings to override system wide defaults

PIO_ROOT

Sets the root task of the PIO subsystem relative to the root task of the model
component. In most cases this value is set to 1, but due to limitations in the POP
model OCN_PIO_ROOT must be set to 0.

ATM_PIO_ROOT, CPL_PIO_ROOT, GLC_PIO_ROOT, ICE_PIO_ROOT,
LND_PIO_ROOT, OCN_PIO_ROOT

Component specific settings to override system wide defaults

PIO_STRIDE

Sets the offset between one IO task and the next for a given model component.
Typically one would set either PIO_NUMTASKS or PIO_STRIDE and allow the
model to set a reasonable default for the other variable.

ATM_PIO_STRIDE, CPL_PIO_STRIDE, GLC_PIO_STRIDE, ICE_PIO_STRIDE,
LND_PIO_STRIDE, OCN_PIO_STRIDE

Component specific settings to override system wide defaults

PIO_TYPENAME

Sets the lowlevel library that PIO should interface. Possible values (depending
on the available backend libraries) are netcdf, pnetcdf, netcdf4p and netcdf4c.
netcdf is the default and requires the model to be linked with a netdf3 or netcdf4
library. pnetcdf requires the parallel netcdf library and may provide better per-
formance than netcdf depending on a number of factors including platform and
model decomposition. netcdf4p (parallel) and netcdf4c (compressed) require a
netcdf4 library compiled with parallel hdf5. These options are not yet consid-
ered robust and should be used with caution.

ATM_PIO_TYPENAME, CPL_PIO_TYPENAME, GLC_PIO_TYPENAME,
ICE_PIO_TYPENAME, LND_PIO_TYPENAME, OCN_PIO_TYPENAME

Component specific settings to override system wide defaults

PIO_DEBUG_LEVEL

Sets a flag for verbose debug output from the pio layer. Recommended for expert
use only.

PIO_ASYNC_INTERFACE

This variable is reserved for future use and must currently be set to FALSE.

Archiving is a phase of a CESM model run where the generated output data is
moved from $RUNDIR (normally $EXEROOT/run) to a local disk area (short-term
archiving) and subsequently to a long-term storage system (long-term archiving). It
has no impact on the production run except to clean up disk space and help manage
user quotas. Short and long-term archiving environment variables are set in
the env_mach_specific file. Although short-term and long-term archiving are
implemented independently in the scripts, there is a dependence between the two
since the short-term archiver must be turned on in order for the long-term archiver
to be activated. In env_run.xml, several variables control the behavior of short and
long-term archiving. These are described below.

LOGDIR

Extra copies of the component log files will be saved here.

51



Chapter 5. Running a case

DOUT_S

If TRUE, short term archiving will be turned on.

DOUT_S_ROOT

Root directory for short term archiving. This directory must be visible to com-
pute nodes.

DOUT_S_SAVE_INT_REST_FILES

If TRUE, perform short term archiving on all interim restart files, not just those
at the end of the run. By default, this value is FALSE. This is for expert users
ONLY and requires expert knowledge. We will not document this further in this
guide.

DOUT_L_MS

If TRUE, perform long-term archiving on the output data.

DOUT_L_MSROOT

Root directory on mass store system for long-term data archives.

DOUT_L_HTAR

If true, DOUT_L_HTAR the long-term archiver will store history data in annual
tar files.

DOUT_L_RCP

If TRUE, long-term archiving is done via the rcp command (this is not currently
supported).

DOUT_L_RCP_ROOT

Root directory for long-term archiving on rcp remote machine. (this is not cur-
rently supported).

Several important points need to be made about archiving:

• By default, short-term archiving is enabled and long-term archiving is disabled.

• All output data is initially written to $RUNDIR.

• Unless a user explicitly turns off short-term archiving, files will be moved to
$DOUT_S_ROOT at the end of a successful model run.

• If long-term archiving is enabled, files will be moved to $DOUT_L_MSROOT by
$CASE.$MACH.l_archive, which is run as a separate batch job after the successful
completion of a model run.

• Users should generally turn off short term-archiving when developing new CESM
code.

• If long-term archiving is not enabled, users must monitor quotas and usage in the
$DOUT_S_ROOT/ directory and should manually clean up these areas on a fre-
quent basis.

Standard output generated from each CESM component is saved in a "log file" for
each component in $RUNDIR. Each time the model is run, a single coordinated dat-
estamp is incorporated in the filenames of all output log files associated with that run.
This common datestamp is generated by the run script and is of the form YYMMDD-
hhmmss, where YYMMDD are the Year, Month, Day and hhmmss are the hour,
minute and second that the run began (e.g. ocn.log.040526-082714). Log files are also
copied to a user specified directory using the variable $LOGDIR in env_run.xml.
The default is a ’logs’ subdirectory beneath the case directory.

52



Chapter 5. Running a case

By default, each component also periodically writes history files (usually
monthly) in netCDF format and also writes netCDF or binary restart files in the
$RUNDIR directory. The history and log files are controlled independently by each
component. History output control (i.e. output fields and frequency) is set in the
Buildconf/$component.buildnml.csh files.

The raw history data does not lend itself well to easy time-series analysis. For exam-
ple, CAM writes one or more large netCDF history file(s) at each requested output
period. While this behavior is optimal for model execution, it makes it difficult to an-
alyze time series of individual variables without having to access the entire data vol-
ume. Thus, the raw data from major model integrations is usually postprocessed into
more user-friendly configurations, such as single files containing long time-series of
each output fields, and made available to the community.

As an example, for the following example settings

DOUT_S = TRUE
DOUT_S_ROOT = /ptmp/$user/archive
DOUT_L_MS = TRUE
DOUT_L_MSROOT /USER/csm/b40.B2000

the run will automatically submit the $CASE.$MACH.l_archive to the queue upon its
completion to archive the data. The system is not bulletproof, and the user will want
to verify at regular intervals that the archived data is complete, particularly during
long running jobs.

Load balancing a case
Load balancing refers to the optimization of the processor layout for a given model
configuration (compset, grid, etc) such that the cost and throughput will be opti-
mal. Optimal is a somewhat subjective thing. For a fixed total number of proces-
sors, it means achieving the maximum throughput. For a given configuration across
varied processor counts, it means finding several "sweet spots" where the model
is minimally idle, the cost is relatively low, and the throughput is relatively high.
As with most models, increasing total processors normally results in both increased
throughput and increased cost. If models scaled linearly, the cost would remain con-
stant across different processor counts, but generally, models don’t scale linearly and
cost increases with increasing processor count. This is certainly true for CESM. It is
strongly recommended that a user perform a load-balancing exercise on their pro-
posed model run before undertaking a long production run.

CESM has significant flexibility with respect to the layout of components across dif-
ferent hardware processors. In general, there are six unique models (atm, lnd, ocn,
ice, glc, cpl) that are managed independently in CESM, each with a unique MPI com-
municator. In addition, the driver runs on the union of all processors and controls the
sequencing and hardware partitioning.

Please see the section on setting the case PE layout for a detailed discussion of how
to set processor layouts and the example on changing the PE layout .

Model timing data
In order to perform a load balancing exercise, the user must first be aware of the
different types of timing information produced by every CESM run. How this infor-
mation is used is described in detail in using model timing data.

A summary timing output file is produced after every CESM run. This file is placed
in $CASEROOT/timing/ccsm_timing.$CASE.$date, where $date is a datestamp set
by CESM at runtime, and contains a summary of various information. The following
provides a description of the most important parts of a timing file.

53



Chapter 5. Running a case

The first section in the timing output, CESM TIMING PROFILE, summarizes general
timing information for the run. The total run time and cost is given in several metrics
including pe-hrs per simulated year (cost), simulated years per wall day (thoughput),
seconds, and seconds per model day. This provides general summary information
quickly in several units for analysis and comparison with other runs. The total run
time for each component is also provided, as is the time for initialization of the model.
These times are the aggregate over the total run and do not take into account any
temporal or processor load imbalances.

The second section in the timing output, "DRIVER TIMING FLOWCHART", pro-
vides timing information for the driver in sequential order and indicates which pro-
cessors are involved in the cost. Finally, the timings for the coupler are broken out at
the bottom of the timing output file.

Separately, there is another file in the timing directory,
ccsm_timing_summary.$CASE.$date that accompanies the above timing summary.
This second file provides a summary of the minimum and maximum of all the
model timers.

There is one other stream of useful timing information in the cpl.log.$date file that
is produced for every run. The cpl.log file contains the run time for each model day
during the model run. This diagnostic is output as the model runs. You can search
for tStamp in the cpl.log file to see this information. This timing information is useful
for tracking down temporal variability in model cost either due to inherent model
variability cost (I/O, spin-up, seasonal, etc) or possibly due to variability due to
hardware. The model daily cost is generally pretty constant unless I/O is written
intermittently such as at the end of the month.

Using model timing data
In practice, load-balancing requires a number of considerations such as which com-
ponents are run, their absolute and relative resolution; cost, scaling and processor
count sweet-spots for each component; and internal load imbalance within a com-
ponent. It is often best to load balance the system with all significant run-time I/O
turned off because this occurs very infrequently (typically one timestep per month),
is best treated as a separate cost, and can bias interpretation of the overall model
load balance. Also, the use of OpenMP threading in some or all of the components
is dependent on the hardware/OS support as well as whether the system supports
running all MPI and mixed MPI/OpenMP on overlapping processors for different
components. A final point is deciding whether components should run sequentially,
concurrently, or some combination of the two with each other. Typically, a series of
short test runs is done with the desired production configuration to establish a rea-
sonable load balance setup for the production job. The timing output can be used to
compare test runs to help determine the optimal load balance.

In general, we normally carry out 20-day model runs with restarts and history turned
off in order to find the layout that has the best load balance for the targeted num-
ber of processors. This provides a reasonable performance estimate for the produc-
tion run for most of the runtime. The end of month history and end of run restart
I/O is treated as a separate cost from the load balance perspective. To setup this
test configuration, create your production case, and then edit env_run.xml and set
STOP_OPTION to ndays, STOP_N to 20, and RESTART_OPTION to never. Seasonal
variation and spin-up costs can change performance over time, so even after a pro-
duction run has started, its worth occasionally reviewing the timing output to see
whether any changes might be made to the layout to improve throughput or decrease
cost.

In determining an optimal load balance for a specific configuration, two pieces of
information are useful.

• Determine which component or components are most expensive.

54



Chapter 5. Running a case

• Understand the scaling of the individual components, whether they run faster with
all MPI or mixed MPI/OpenMP decomposition strategies, and their optimal de-
compositions at each processor count. If the cost and scaling of the components are
unknown, several short tests can be carried with arbitrary component pe counts
just to establish component scaling and sweet spots.

One method for determining an optimal load balance is as follows

• start with the most expensive component and a fixed optimal processor count and
decomposition for that component

• test the systems, varying the sequencing/concurrency of the components and the
pe counts of the other components

• identify a few best potential load balance configurations and then run each a few
times to establish run-to-run variability and to try to statistically establish the faster
layout

In all cases, the component run times in the timing output file can be reviewed for
both overall throughput and independent component timings. Using the timing out-
put, idle processors can be identified by considering the component concurrency in
conjunction with the component timing.

In general, there are only a few reasonable concurrency options for CESM:

• fully sequential

• fully sequential except the ocean running concurrently

• fully sequential except the ice and land running concurrently with each other

• atmosphere running sequentially with the land and ice which are running concur-
rently and then the ocean running concurrently with everything

• finally, it makes best sense for the coupler to run on a subset of the atmosphere
processors and that can be sequentially or concurrently with the land and ice

The concurrency is limited in part by the hardwired sequencing in the driver. This
sequencing is set by scientific constraints, although there may be some addition flexi-
bility with respect to concurrency when running with mixed active and data models.

There are some general rules for finding optimal configurations:

• Make sure you have set a processor layout where each hardwire processor is as-
signed to at least one component. There is rarely a reason to have completely idle
processors in your layout.

• Make sure your cheapest components keep up with your most expensive compo-
nents. In other words, a component that runs on 1024 processors should not be
waiting on a component running on 16 processors.

• Before running the job, make sure the batch queue settings in the
$CASE.$MACH.run script are set correctly for the specific run being targetted. The
account numbers, queue names, time limits should be reviewed. The ideal time
limit, queues, and run length are all dependent on each other and on the current
model throughput.

• Make sure you are taking full advantage of the hardware resources. If you are
charged by the 32-way node, you might as well target a total processor count that
is a multiple of 32.

• If possible, keep a single component on a single node. That usually minimizes in-
ternal component communication cost. That’s obviously not possible if running on
more processors than the size of a node.

55



Chapter 5. Running a case

• And always assume the hardware performance could have variations due to con-
tention on the interconnect, file systems, or other areas. If unsure, run cases multi-
ple times.

The Run

Setting the time limits
Before you can run the job, you need to make sure the batch queue variables are set
correctly for the specific run being targeted. This is done currently by manually edit-
ing $CASE.$MACH.run. The user should carefully check the batch queue submission
lines and make sure that you have appropriate account numbers, time limits, and
stdout file names. In looking at the ccsm_timing.$CASE.$datestamp files for "Model
Throughput", output like the following will be found:

Overall Metrics:
Model Cost: 327.14 pe-hrs/simulated_year (scale= 0.50)
Model Throughput: 4.70 simulated_years/day

The model throughput is the estimated number of model years that you can run
in a wallclock day. Based on this, the user can maximize $CASE.$MACH.run queue
limit and change $STOP_OPTION and $STOP_N in env_run.xml. For example, say a
model’s throughput is 4.7 simulated_years/day. On bluefire, the maximum runtime
limit is 6 hours. 4.7 model years/24 hours * 6 hours = 1.17 years. On the massively
parallel computers, there is always some variability in how long it will take a job to
run. On some machines, you may need to leave as much as 20% buffer time in your
run to guarantee that jobs finish reliably before the time limit. For that reason we will
set our model to run only one model year/job. Continuing to assume that the run is
on bluefire, in $CASE.bluefire.run set

#BSUB -W 6:00

and xmlchange should be invoked as follows in $CASEROOT:

./xmlchange -file env_run.xml -id STOP_OPTION -val nyears

./xmlchange -file env_run.xml -id STOP_N -val 1

./xmlchange -file env_run.xml -id REST_OPTION -val nyears

./xmlchange -file env_run.xml -id REST_N -val 1

Submitting the run
Once you have configured and built the model, submit $CASE.$MACH.run to your
machine’s batch queue system. For example on NCAR’s IBM, yellowstone,

> # for yellowstone
> bsub < $CASE.yellowstone.run
> # for titan
> qsub $CASE.titan.run

You can see a complete example of how to run a case in the basic example.

When executed, the run script, $CASE.$MACH.run, will:

• Check to verify that the env files are consistent with the configure and build scripts

• Verify that required input data is present on local disk (in
$DIN_LOC_ROOT_CSMDATA) and run the buildnml script for each component

56



Chapter 5. Running a case

• Run the CESM model. Put timing information in $LOGDIR/timing. If $LOGDIR is
set, copy log files back to $LOGDIR

• If $DOUT_S is TRUE, component history, log, diagnostic, and restart files will be
moved from $RUNDIR to the short-term archive directory, $DOUT_S_ROOT.

• If $DOUT_L_MS is TRUE, the long-term archiver, $CASE.$MACH.l_archive, will
be submitted to the batch queue upon successful completion of the run.

• If $RESUBMIT >0, resubmit $CASE.$MACH.run

NOTE: This script does NOT execute the build script, $CASE.$MACH.build. Building
CESM is now done only via an interactive call to the build script.

If the job runs to completion, you should have "SUCCESSFUL TERMINATION OF
CPL7-CCSM" near the end of your STDOUT file. New data should be in the subdi-
rectories under $DOUT_S_ROOT, or if you have long-term archiving turned on, it
should be automatically moved to subdirectories under $DOUT_L_MSROOT.

If the job failed, there are several places where you should look for information. Start
with the STDOUT and STDERR file(s) in $CASEROOT. If you don’t find an obvious
error message there, the $RUNDIR/$model.log.$datestamp files will probably give
you a hint. First check cpl.log.$datestamp, because it will often tell you when the
model failed. Then check the rest of the component log files. Please see troubleshoot-
ing runtime errors for more information.

REMINDER: Once you have a successful first run, you must set CONTINUE_RUN to
TRUE in env_run.xml before resubmitting, otherwise the job will not progress. You
may also need to modify the RESUBMIT, STOP_OPTION, STOP_N, STOP_DATE,
REST_OPTION, REST_N and/or REST_DATE variables in env_run.xml before re-
submitting.

Restarting a run
Restart files are written by each active component (and some data components)
at intervals dictated by the driver via the setting of the env_run.xml variables,
$REST_OPTION and $REST_N. Restart files allow the model to stop and then start
again with bit-for-bit exact capability (i.e. the model output is exactly the same as if
it had never been stopped). The driver coordinates the writing of restart files as
well as the time evolution of the model. All components receive restart and stop
information from the driver and write restarts or stop as specified by the driver.

It is important to note that runs that are initialized as branch or hybrid runs,
will require restart/initial files from previous model runs (as specified by the
env_conf.xml variables, $RUN_REFCASE and $RUN_REFDATE). These required
files must be prestaged by the user to the case $RUNDIR (normally $EXEROOT/run)
before the model run starts. This is normally done by just copying the contents of
the relevant $RUN_REFCASE/rest/$RUN_REFDATE.00000 directory.

Whenever a component writes a restart file, it also writes a restart pointer file of the
form, rpointer.$component. The restart pointer file contains the restart filename
that was just written by the component. Upon a restart, each component reads its
restart pointer file to determine the filename(s) to read in order to continue the model
run. As examples, the following pointer files will be created for a component set using
full active model components.

• rpointer.atm

• rpointer.drv

• rpointer.ice

• rpointer.lnd

• rpointer.ocn.ovf

57



Chapter 5. Running a case

• rpointer.ocn.restart

If short-term archiving is turned on, then the model archives the component restart
datasets and pointer files into $DOUT_S_ROOT/rest/yyyy-mm-dd-sssss, where
yyyy-mm-dd-sssss is the model date at the time of the restart (see below for more
details). If long-term archiving these restart then archived in $DOUT_L_MSROOT/rest.
DOUT_S_ROOT and DOUT_L_MSROOT are set in env_run.xml, and can be
changed at any time during the run.

Backing up to a previous restart
If a run encounters problems and crashes, the user will normally have to back up
to a previous restart. Assuming that short-term archiving is enabled, the user needs
to find the latest $DOUT_S_ROOT/rest/yyyy-mm-dd-ssss/ directory that was create
and copy the contents of that directory into their run directory ($RUNDIR). The user
can then continue the run and these restarts will be used. It is important to make sure
the new rpointer.* files overwrite the rpointer.* files that were in $RUNDIR, or the job
may not restart in the correct place.

Occasionally, when a run has problems restarting, it is because the rpointer files are
out of sync with the restart files. The rpointer files are text files and can easily be
edited to match the correct dates of the restart and history files. All the restart files
should have the same date.

Data flow during a model run
All component log files are copied to the directory specified by the env_run.xml
variable $LOGDIR which by default is set to $CASEROOT/logs. This location is where
log files are copied when the job completes successfully. If the job aborts, the log files
will NOT be copied out of the $RUNDIR directory.

Once a model run has completed successfully, the output data flow will depend on
whether or not short-term archiving is enabled (as set by the env_run.xml variable,
$DOUT_S). By default, short-term archiving will be done.

No archiving
If no short-term archiving is performed, then all model output data will remain in
the run directory, as specified by the env_run.xml variable, $RUNDIR. Furthermore,
if short-term archiving is disabled, then long-term archiving will not be allowed.

Short-term archiving
If short-term archiving is enabled, the component output files will be moved to the
short term archiving area on local disk, as specified by $DOUT_S_ROOT. The di-
rectory DOUT_S_ROOT is normally set to $EXEROOT/../archive/$CASE. and will
contain the following directory structure:

atm/
hist/ logs/

cpl/
hist/ logs/

glc/
logs/

ice/
hist/ logs/

lnd/
hist/ logs/

ocn/

58



Chapter 5. Running a case

hist/ logs/
rest/

yyyy-mm-dd-sssss/
....
yyyy-mm-dd-sssss/

hist/ contains component history output for the run.

logs/ contains component log files created during the run. In addition to $LOGDIR,
log files are also copied to the short-term archiving directory and therefore are avail-
able for long-term archiving.

rest/ contains a subset of directories that each contain a consistent set of restart files,
initial files and rpointer files. Each sub-directory has a unique name corresponding
to the model year, month, day and seconds into the day where the files were created
(e.g. 1852-01-01-00000/). The contents of any restart directory can be used to create
a branch run or a hybrid run or back up to a previous restart date.

Long-term archiving
For long production runs that generate many giga-bytes of data, the user normally
wants to move the output data from local disk to a long-term archival location.
Long-term archiving can be activated by setting $DOUT_L_MS to TRUE in
env_run.xml. By default, the value of this variable is FALSE, and long-term
archiving is disabled. If the value is set to TRUE, then the following additional
variables are: $DOUT_L_MSROOT, $DOUT_S_ROOT DOUT_S (see variables for
output data management ).

As was mentioned above, if long-term archiving is enabled, files will be moved out
of $DOUT_S_ROOT to $DOUT_L_ROOT by $CASE.$MACH.l_archive„ which is run
as a separate batch job after the successful completion of a model run.

Testing a case
After the case has built and has demonstrated the ability to run via a short test, it is
important to formally test exact restart capability before a production run is started.
See the Section called create_production_test in Chapter 8 for more information about
how to use create_production_test.

Notes
1. http://code.google.com/p/parallelio

59



Chapter 5. Running a case

60



Chapter 6. Post Processing CESM Output

A completed run of CESM1.0 will produce a large number of files, each with
many variables. Post processing these files presents several unique challenges.
Various techniques and tools have been developed to meet these challenges. Each
component maintains its own post-processing utility suite that can be accessed from
the release code repository1. Component post-processing utilities are currently
provided only as a service to the community. Informal community support is
provided via the CCSM bulletin board2. General questions should be submitted to
this bulletin board; however, any bugs found in the packages should be reported to
the appropriate working group liaison.

Once approval is granted for access to the release repository, users may freely down-
load the diagnostic packages. Users are urged to ’export’ the packages from the repos-
itory rather than checking them out. For example:

> svn export https://svn-ccsm-release.cgd.ucar.edu/model_diagnostics/atm/cam/amwg_diag2.5

will result in the user obtaining the post processing utilities "amwg_diag2.5". For
more details on utilizing the release repository, please see Downloading CESM for
more details.

Notes
1. https://svn-ccsm-release.cgd.ucar.edu/model_diagnostics

2. http://bb.cgd.ucar.edu/

61



Chapter 6. Post Processing CESM Output

62



Chapter 7. Porting CESM

One of the first steps many users will have to address is getting the CESM model
running on their local machine. This section addresses that step. This section will de-
scribe two different ways of going about that. First, using a generic machine to setup
a case, get that case running, then backing out the new machine settings. Second,
setting up some new machine settings, creating a case, testing it, and iterating on the
machine settings. There are similarities and overlap in both methods. The generic
method is likely to produce a running case faster. But eventually, users will want
to setup the CESM scripts so their local machine is supported out-of-the-box. This
greatly eases setting up cases and benefits groups of users by requiring the port be
done only once. Finally, some steps to validate the model will be recommended.

Note: When porting using either of the two methods described above, you will want to
initially get a dead, X, compset running at a low resolution. So you could, for instance,
start with an X compset at resolution f45_g37. This allows you to determine whether
all prerequisite software is in place and working. Once that is working move to an A
compset with resolution f45_g37. Once that’s working, run a B compset at resolution
f45_g37. Finally when all the previous steps have run correctly, run your target compset
and resolution.

Porting to a new machine

Porting using a generic machine
This section describes how to setup a case using a generic machine name and then
within that case, how to modify the scripts to get that case running on a local ma-
chine. In this section, the case name test1 and the generic machine generic_linux_intel
will be used in the example. But the specific casename, generic machine, resolution,
and compset to test is at the discretion of the user.

1. Run create_newcase choosing a generic machine name that is closest to the
local machine type. Typing
> create_newcase -l
will provide a list of possible machines. The generic machines start with the
name "generic_". The generic machines are different from the supported ma-
chines because extra inline documentation is provided and the user will have
to modify some of the resolved scripts.

Additional command line arguments are required for the generic machines to
help setup some of the local environment variables. Typing
> create_newcase -h
provides a description of the command line arguments. The create_newcase
will look something like this for a generic machine
> cd cesm/scripts
> create_newcase -case test1 \

-res f19_g16 \
-compset X \
-mach generic_linux_intel \
-scratchroot /ptmp/username \
-din_loc_root_csmdata /home/ccsm/inputdata \
-max_tasks_per_node 8 \

2. Run configure.
> cd test1
> configure -case

63



Chapter 7. Porting CESM

If there are errors at this step, the best approach might be to port starting from
the machine files instead of a generic machine. See the Section called Porting
via user defined machine files.

3. Edit the scripts to be consistent with the local machine. Search for
"GENERIC_USER" in the scripts. That tag will highlight inline documentation
and areas that will likely need to be modified. In particular, modifications will
be needed in the following files.

• env_mach_specific is where modules, paths, or machine environment vari-
ables need to be set. See the "GENERIC_USER" inline documentation in that
file.

• Macros.generic_linux_intel is a Macros file for gmake for the system. In
general, that entire file should be reviewed but there are some particular
comments about setting the paths for the netcdf and mpi external libraries.
See the "GENERIC_USER" inline documentation in that file. In general
you need to set NETCDF_PATH and MPICH_PATH and that can be set in
the Macros file, but they could also be set in the default user paths, by
an explicit addition to the local path in the env_mach_specific file, or via
setting NETCDF_PATH and MPICH_PATH environment variables in the
env_mach_specific file. If you want the value in the Macro’s file to always
be used you may need to comment out the if statement that checks if it’s set
elsewhere before overriding it to a hardwired value. While CESM supports
use of pnetcdf in pio, it’s generally best to ignore that feature during initial
porting. pio works well with standard netcdf.

• test1.generic_linux_intel.run is the job submission script. Modifications are
needed there to address the local batch environment and the job launch. See
the "GENERIC_USER" inline documentation in that file.

4. Build the case
> ./test1.generic_linux_intel.build
This step will often fail if paths to compilers, compiler versions, or libraries are
not set properly, if compiler options are not set properly, or if machine envi-
ronment variables are not set properly. Review and edit the env_mach_specific
and Macros.generic_linux_intel files, clean the build,
> ./test1.generic_linux_intel.clean_build
and try rebuilding again.

5. Run the job using the local job submission command. qsub is used here for
example.
> qsub test1.generic_linux_intel.run
The job will fail to submit if the batch commands are not set properly. The job
could fail to run if the launch command is incorrect or if the batch commands
are not set consistent with the job resource needs. Review the run script and
try resubmitting.

6. Once a case is running, then the local setup for the case can be converted into a
specific set of machine files, so future cases can be setup using the user defined
machine name, not the generic machine, and cases should be able to run out-
of-the-box. This step is very similar to the steps associated with porting using
user defined machine files, see the Section called Porting via user defined machine
files.

Basically, files in cesm/scripts/ccsm_utils/Machines will be added or modi-
fied to support the user defined machine out-of-the-box. An env_machopts,
Macros, and mkbatch file will be added and the config_machines.xml file will
be modified. First, pick a name that will be associated with the local machine.
Generally, that’s the name of the local machine, but it could be anything. bugs-
bunny will be used in the description to follow and the bugsbunny setup will

64



Chapter 7. Porting CESM

be based on the test1 example case above that is running on bugsbunny. To
add bugsbunny to the list of supported machines, do the following

• Edit cesm/scripts/ccsm_utils/Machines/config_machines.xml. Add an
entry for bugsbunny. A good idea is to copy one of the existing entries
and then edit it. The machine specific env variables that need to be set
in config_machines.xml for bugsbunny are already set in the env files in
the test1 case directory that was created from the generic machine. Those
values can be translated directly into the config_machines.xml files for
bugsbunny. That’s a starting point anyway. In some cases, variables might
need to be made more general. For instance, the port person’s user name
and the initial test case should not appear in the variable definitions.

• Copy the env_mach_specific file from the test1 case directory to
cesm/scripts/ccsm_utils/Machines as follows
> cd cesm/scripts/test1
> cp env_mach_specific ../ccsm_utils/Machines/env_machopts.bugsbunny

• Copy the Macros file from the test1 case directory to
cesm/scripts/ccsm_utils/Machines as follows
> cd cesm/scripts/test1
> cp Macros.generic_linux_intel ../ccsm_utils/Machines/Macros.bugsbunny
Then edit the cesm/scripts/ccsm_utils/Machines/Macros.bugsbunny file
and delete everything up to the lines
#===============================================================================
# The following always need to be set
That first section of the Macros file is added automatically when a case is
configured so should not be included in the machine specific setting.

• Create a mkbatch.bugsbunny file in cesm/scripts/ccsm_utils/Machines.
The easiest way to do this is probably to copy the
mkbatch.generic_linux_intel file from that directory to mkbatch.bugsbunny
> cd cesm/scripts/ccsm_utils/Machines
> cp mkbatch.generic_linux_intel mkbatch.bugsbunny
Then edit the mkbatch.bugsbunny to match the changes made in
the test1.generic_linux_intel.run file in the test1 case. Remove the
GENERIC_USER inline documentation and where that documentation
existed, update the batch commands and job launch commands to be
consistent with the test1 run script. The first part of the mkbatch script
computes values that can be used in the batch commands. It might require
some extra iteration to get this working for all cases, processor counts, and
processor layouts.

• Test the new machine setup. Create a new case based on test1 using the bugs-
bunny machine setup
> cd cesm/scripts
> create_newcase -case test1_bugsbunny \

-res f09_g16 \
-compset X \
-mach bugsbunny

Then configure, build, and run the case and confirm that test1_bugsbunny
runs fine and is consistent with the original test1 case. Once that works, test
other configurations then move to port validation, see the Section called Port
Validation.

Porting via user defined machine files
This section describes how to add support for a new machine using machine
specific files. The basic approach is to add support for the new machine to

65



Chapter 7. Porting CESM

the CESM scripts directly and then to test and iterate on that setup. Files in
cesm/scripts/ccsm_utils/Machines will be added or modified to support the user
defined machine out-of-the-box. An env_machopts, Macros, and mkbatch file will
be added and the config_machines.xml file will be modified. First, pick a name that
will be associated with the local machine. Generally, that’s the name of the local
machine, but it could be anything. wilycoyote will be used in the description to
follow. It’s also helpful to identify an existing supported machine that is similar to
your machine to use as a starting point in porting. If the user defined machine is a
linux cluster with an intel compiler, then after reviewing the current supported
machines using

> cd cesm/scripts
> ./create_newcase -l

dublin_intel, hadley, or generic_linux_intel would be good candidates as
starting points. Starting with a generic machine provides some additional inline
documentation to aid in porting. If a generic machine is used, search for the tag
"GENERIC_USER" in the scripts for additional documentation. In the example
below, dublin_intel will be used as the starting point. To add wilycoyote to the list of
supported machines, do the following

• Edit cesm/scripts/ccsm_utils/Machines/config_machines.xml. Add an entry
for wilycoyote. A good idea is to copy one of the existing entries and then
edit the values for wilycoyote. You could start with the dublin_intel settings
although nearly any machine will be ok. There are several variable settings here.
The definition of these variables can be found in the appendix, see Appendix D,
Appendix E, Appendix F, Appendix G, and Appendix H. Some of the important
ones are MACH which should be set to wilycoyote, EXEROOT which should be
set to a generic working directory like /tmp/scratch/$CCSMUSER/$CASE,
DIN_LOC_ROOT_CSMDATA which should be set to the path to the ccsm
inputdata directory, BATCHQUERY and BATCHJOBS which specify the query
and submit command lines for batch jobs and are used to chain jobs together in
production, and MAX_TASKS_PER_NODE which set the maximum number of
tasks allowed on each hardware node.

• Copy an env_machopts file to env_machopts.wilycoyote. Start with the
dublin_intel file.
> cd cesm/scripts/ccsm_utils/Machines
> cp env_machopts.dublin_intel env_machopts.wilycoyote
Edit env_machopts.wilycoyote to change the environment setup, paths, modules,
and environment variables to be consistent with wilycoyote.

• Copy a Macros file to Macros.wilycoyote. Start with the dublin_intel file.
> cd cesm/scripts/ccsm_utils/Machines
> cp Macros.dublin_intel Macros.wilycoyote
Then review and edit the Macros.wilycoyote file as needed. Pay particular atten-
tion to the compiler name, and the netcdf and mpi paths. While the compiler op-
tions for a given compiler are pretty consistent across machines, invoking the com-
piler and the local paths for libraries are not. While CESM supports use of pnetcdf
in pio, it’s generally best to ignore that feature during initial porting. pio works
well with standard netcdf.

• Copy a mkbatch file to mkbatch.wilycoyote file. Start with the dublin_intel file.
> cd cesm/scripts/ccsm_utils/Machines
> cp mkbatch.dublin_intel mkbatch.wilycoyote
Then edit the mkbatch.wilycoyote to be consistent with wilycoyote. In particular,
the batch commands and the job launching will probably need to be changed. The
batch commands and setup are the first section of the script. The job launching can
be found by searching for the string "CSM EXECUTION".

66



Chapter 7. Porting CESM

• After an initial pass is made to setup the new machine files, try creating
a case, building and running. Getting this to work will be an iterative
process. Changes will probably be made in both the machine files in
cesm/scripts/ccsm_utils/Machines for wilycoyote and in the case as testing
proceeds. Whenever the machine files are updated, a new case should be setup.
Whenever something is changed in the case scripts to fix a problem, that change
should be migrated back to the wilycoyote machine files. In general, it’s probably
easiest to modify the machine files and create new cases until the case configures
successfully. Once the case is configuring, it’s often easiest to edit the case scripts
to fix problems in the build and run. Once a case is running, those changes in
the case need to be backed out into the wilycoyote machine files and then those
machine files can be tested with a new case.
> cd cesm/scripts
> create_newcase -case test_wily1 \

-res f19_g16 \
-compset X \
-mach wilycoyote

> cd test_wily1
> configure -case
> ./test_wily1.wilycoyote.build
> qsub test_wily1.wilycoyote.run
Eventually, the machine files should work for any user and any configuration for
wilycoyote.

Port Validation
The following port validation is recommended for any new machine. Carrying out
these steps does not guarantee the model is running properly in all cases nor that the
model is scientifically valid on the new machine. In addition to these tests, detailed
validation should be carried out for any new production run. That means verify-
ing that model restarts are bit-for-bit identical with a baseline run, that the model is
bit-for-bit reproducible when identical cases are run for several months, and that pro-
duction cases are monitored very carefully as they integrate forward to identify any
potential problems as early as possible. These are recommended steps for validating
a port and are largely functional tests. Users are responsible for their own validation
process, especially with respect to science validation.

1. Verify functionality by performing these functionality tests.
ERS_D.f19_g16.X
ERS_D.T31_g37.A
ERS_D.f19_g16.B1850CN
ERI.f19_g16.X
ERI.T31_g37.A
ERI.f19_g16.B1850CN
ERS.f19_f19.F
ERS.f19_g16.I
ERS.T62_g16.C
ERS.T62_g16.D
ERT.f19_g16.B1850CN

2. Verify performance and scaling analysis.

a. Create one or two load-balanced configurations to check into
Machines/config_pes.xml for the new machine.

b. Verify that performance and scaling are reasonable.

c. Review timing summaries in $CASEROOT for load balance and
throughput.

67



Chapter 7. Porting CESM

d. Review coupler "daily" timing output for timing inconsistencies. As has
been mentioned in the section on load balancing a case , useful timing
information is contained in cpl.log.$date file that is produced for every
run. The cpl.log file contains the run time for each model day during the
model run. This diagnostic is output as the model runs. You can search
for tStamp in this file to see this information. This timing information is
useful for tracking down temporal variability in model cost either due to
inherent model variability cost (I/O, spin-up, seasonal, etc) or possibly
due to variability due to hardware. The model daily cost is generally
pretty constant unless I/O is written intermittently such as at the end of
the month.

3. Perform validation (both functional and scientific):

a. Perform a CAM error growth test1.

b. Perform a CLM perturbation error growth test (as described in the CLM
User’s Guide2).

c. Follow the CESM 1.0 CICE port-validation procedure.3

d. Follow the CESM 1.0 POP2 port-validation procedure.4

4. Perform two, one-year runs (using the expected load-balanced configuration)
as separate job submissions and verify that atmosphere history files are bfb
for the last month. Do this after some performance testing is complete; you
may also combine this with the production test by running the first year as a
single run and the second year as a multi-submission production run. This will
test reproducibility, exact restart over the one-year timescale, and production
capability all in one test.

5. Carry out a 20-30 year 1.9x2.5_gx1v6 resolution, B_1850_CN compset simula-
tion and compare the results with the diagnostics plots for the 1.9x2.5_gx1v6
Pre-Industrial Control (see the CESM diagnostics 5). Model output data for
these runs will be available on the Earth System Grid (ESG) 6 as well.

Notes
1. http://www.cesm.ucar.edu/models/atm-cam/port/

2. http://www.cesm.ucar.edu/models/cesm1.0/clm/models/lnd/clm/doc/UsersGuide/book1.html

3. http://www.cesm.ucar.edu/models/cesm1.0/cice/validation/index.html

4. http://www.cesm.ucar.edu/models/cesm1.0/pop2/validation/index.html

5. http://www.cesm.ucar.edu/experiments/cesm1.0/diagnostics/

6. http://www.earthsystemgrid.org/browse/viewDataset.htm?datasetId=1358c818-
d8b4-48d9-b530-66ad9a2e4381

68



Chapter 8. CESM Testing

Testing overview
CESM has a few tools that support automated testing of the model. In general, these
should be used only after the model has been ported to the target machine (see
Chapter 7). The tools are create_production_test, create_test, and create_test_suite.
The create_production_test tool is executed from a working case, and it tests exact
restartability of that case setup in a separate directory. The create_test tool allows a
user to quickly setup and run one of several supported tests. The create_test_suite
tool quickly allows a user to setup and run a list of supported tests. Each of these
tools will be described below.

create_production_test
In general, after configuring and testing a case and before starting a long production
job based on that case, it’s important to verify that the model restarts exactly. This is
a standard requirement of the system and will help demonstrate stability of the con-
figuration technically. The tool create_production_test is located in the case directory,
and it sets up an ERU two month exact restart test in a separate directory based on
the current case. To use it, do the following

> cd $CASEROOT
> ./create_production_test
> cd ../$CASE_ERU.$MACH
> $CASE_ERU.$MACH.build
submit $CASE_ERU.$MACH.run
Check your test results. A successful test produces "PASS" as
the first word in the file, $CASE_ERU.$MACH/TestStatus

If the test fails, see the Section called Debugging Tests That Fail for test debugging
guidance.

create_test
The create_test tool is located in the scripts directory and can be used to setup a
standalone test case. The test cases are fixed and defined within the CESM scripts. To
see the list of test cases or for additional help, type "create_test -help" from the scripts
directory. To use create_test, do something like

> cd $CCSMROOT/scripts
> ./create_test -testname ERS.f19_g16.X.yellowstone -testid t01
> cd ERS.f19_g16.X.yellowstone.t01
> ERS.f19_g16.X.yellowstone.t01.build
submit ERS.f19_g16.X.yellowstone.t01.test
Check your test results. A successful test produces "PASS" as
the first word in the file TestStatus

The above sets up an exact restart test (ERS) at the 1.9x2.5_gx1v6 resolution using a
dead model compset (X) for the machine yellowstone. The testid provides a unique
tag for the test in case it needs to be rerun (i.e. using -testid t02). Some things to note
about CESM tests

• For more information about the create_test tool, run "create_test -help".

• Test results are set in the TestStatus file. The TestStatus.out file provides additional
details.

69



Chapter 8. CESM Testing

• Tests are not always easily re-runable from an existing test directory. Rather than
rerun a previous test case, it’s best to setup a clean test case (i.e. with a new testid).

• The costs of tests vary widely. Some are short and some are long.

• If a test fails, see the Section called Debugging Tests That Fail.

• There are -compare and -generate options for the create_test tool that support re-
gression testing.

• There are extra test options that can be added to the test such as _D, _E, or _P*.
These are described in more detail in the create_test -help output.

The test status results have the following meaning

Test Result Description

BFAIL compare test couldn’t find base result

CHECK manual review of data is required

ERROR test checker failed, test may or may not
have passed

FAIL test failed

GEN test has been generated

PASS test passed

PEND test has been submitted

RUN test is currently running OR it hung,
timed out, or died ungracefully

SFAIL generation of test failed in scripts

TFAIL test setup error

UNDEF undefined result

The following tests are available at the time of writing

Test Description

SMS 5 day smoke test

ERS 10 day exact restart from startup

ERP 2 month exact restart from startup

ERB branch/exact restart test

ERH hybrid/exact restart test

ERI hybrid/branch/exact restart test

ERT 2 month exact restart from startup,
history file test

ERU 2 month exact restart from initial
conditions, history file test

SEQ sequencing bit-for-bit test

PEA single processor testing

PEM pe counts mpi bit-for-bit test

PET pe counts mpi/openmp bit-for-bit test

CME compare mct and esmf interfaces test

70



Chapter 8. CESM Testing

create_test_suite
The create_test_suite tool is located in the scripts directory and can be used to setup a
suite of standalone test cases automatically. To use this tool, a list of tests needs to ex-
ist in a file. Some examples can be found in the directory scripts/ccsm_utils/Testlists.
create_test_suite in invoked on a list of tests and then the full list of tests is gener-
ated. In addition, an automated submission script and reporting script are created.
The cs.submit script reduces the time to submit multiple test cases significantly. To
use this tool, do something like the following

create a list of desired tests in some filename, i.e. my_lists
> create_test_suite -input_list my_lists -testid suite01
> ./cs.status.suite01
> ./cs.submit.suite01.$MACH
> ./cs.status.suite01

The cs.status script is generated by create_test_suite, and it reports the status of all
the tests in the suite. The cs.submit script builds and submits all the tests sequentially.
The cs.submit script should only be executed once to build and submit all the tests.
The cs.status script can be executed as often as needed to check the status of the tests.
When all the tests have completed running, then the results are static and complete.
To help debug failed tests, see the Section called Debugging Tests That Fail..

Debugging Tests That Fail
This section describes what steps can be taken to try to identify why a test failed. The
primary information associated with reviewing and debugging a run can be found
in the Section called Troubleshooting runtime problems in Chapter 10.

First, verify that a test case is no longer in the batch queue. If that’s the case, then
review the possible test results and compare that to the result in the TestStatus file.
Next, review the TestStatus.out file to see if there is any additional information about
what the test did. Finally, go to the troubleshooting section and work through the
various log files.

Finally, there are a couple other things to mention. If the TestStatus file contains
"RUN" but the job is no longer in the queue, it’s possible that the job either timed
out because the wall clock on the batch submission was too short, or the job hung
due to some run-time error. Check the batch log files to see if the job was killed due
to a time limit, and if it was increase the time limit and either resubmit the job or
generate a new test case and update the time limit before submitting it.

Also, a test case can fail because either the job didn’t run properly or because the test
conditions (i.e. exact restart) weren’t met. Try to determine whether the test failed
because the run failed or because the test did not meet the test conditions. If a test is
failing early in a run, it’s usually best to setup a standalone case with the same config-
uration in order to debug problems. If the test is running fine, but the test conditions
are not being met (i.e. exact restart), then that requires debugging of the model in the
context of the test conditions.

Not all tests will pass for all model configurations. Some of the issues we are aware
of are

• All models are bit-for-bit reproducible on different processor counts EXCEPT for
POP2 and CICE diagnostics. The coupler is not bit-for-bit reproducible out of the
box. The BFBFLAG must be set to TRUE in the env_run.xml file for the coupler to
be bit-for-bit reproducible. If you have a configuration where you expect bit-for-bit
reproducibility when you change the processor count AND you want to validate
this, then the BFBFLAG must be set to TRUE in the env_run.xml file if the coupler
is to meet this condition. The main purpose of the BFBFLAG is to enforce a specific
order of operations in the mapping implementation. This constraint can impact

71



Chapter 8. CESM Testing

mapping performance so it is recommended that the BFBFLAG be set to FALSE in
production. Also note that the CESM system is fully bit-for-bit reproducible when
rerunning the same configuration on the same processor count. The BFBFLAG is
only required when trying to reproduce answers when changing processor counts.

• Some of the active components cannot run with the mpi serial library. This library
takes the place of mpi calls when the model is running on one processors and MPI
is not available or not desirable. The mpi serial library is part of the CESM re-
lease and is invoked by setting the USE_MPISERIAL variable in env_build.xml to
TRUE. An effort is underway to extend the mpi serial library to support all compo-
nents’ usage of the mpi library with this standalone implementation. Also NOT all
machines/platforms are setup to enable setting USE_MPISERIAL to TRUE. For
these machines the env variable MPISERIAL_SUPPORT is set to FALSE. In or-
der to enable USE_MPISERIAL to TRUE you also need to make changes in the
Macros and env_machopts files for that machine. The best way to do this is to use
a machine where MPISERIAL_SUPPORT is TRUE and look at the type of changes
needed to make it work. Those same changes will need to be introduced for your
machine. For the Macros file this includes the name of the compiler, possibly op-
tions to the compiler, and the settings of the MPI library and include path. For the
env_machopts file you may want/need to modify the setting of MPICH_PATH.
There also maybe many settings of MPI specific environment variables that don’t
matter when USE_MPISERIAL is TRUE.

72



Chapter 9. Use Cases

The basic example
This specifies all the steps necessary to create, configure, build, and run a case. The
following assumes that $CCSMROOT is /user/ccsmroot.

1. Create a new case named b40.B2000 in the ~/cesm1 directory. Use a present-
day control compset at 1-degree resolution on yellowstone.
> cd /user/ccsmroot
> create_newcase -case ~/cesm1/b40.B2000 \

-compset B_2000 \
-res 0.9x1.25_gx1v6 \
-mach yellowstone

2. Go to the $CASEROOT directory. Edit env_mach_pes.xml if a different pe-
layout is desired first. Then configure and build the case.
> cd ~/cesm1/b40.B2000
> ./configure -case
> b40.B200.yellowstone.build

3. Create a production test. Go to the test directory. Build the test first, then run
the test and check the TestStatus (the first word should be PASS).
> ./create_production_test
> cd ../b40.B2000_ERT
> b40.B2000_ERT.yellowstone.build
> bsub < b40.B2000_ERT.yellowstone.test
> cat TestStatus

4. Go back to the case directory, set the job to run 12 model months, use an editor
to change the time limit in the run file to accommodate a 12-month run, and
submit the job.
> cd ../b40.B2000
> xmlchange -file env_run.xml -id STOP_OPTION -val nmonths
> xmlchange -file env_run.xml -id STOP_N -val 12
> # use an editor to change b40.B2000.yellowstone.run "#BSUB -W 1:30" to "#BSUB -W 6:00"
> bsub < b40.B2000.yellowstone.run

5. Make sure the run succeeded.
> grep "SUCCESSFUL TERMINATION" poe.stdout.*

6. Set it to resubmit itself 10 times so that it will run a total of 11 years (including
the initial year), and resubmit the case. (Note that a resubmit will automatically
change the run to be a continuation run).
> xmlchange -file env_run.xml -id RESUBMIT -val 10
> bsub < b40.B2000.yellowstone.run

Setting up a branch or hybrid run
The section setting the case initialization discussed starting a new case as a branch
run or hybrid run by using data from a previous run. First you need to create a new
case. Assume that $CCSMROOT is set to /user/ccsmroot and that $EXEROOT is
/ptmp/$user/b40.B2000p. Finally, assume that the branch or hybrid run is being
carried out on NCAR’s IBM system, yellowstone.

> cd /user/ccsmroot/scripts
> create_newcase -case ~/cesm1/b40.B2000p \

-compset B_2000 \

73



Chapter 9. Use Cases

-res 0.9x1.25_gx1v6 \
-mach yellowstone

> cd ~/cesm1/b40.B2000p

For a branch run, modify env_conf.xml to branch from b40.B2000 at year 0001-02-01.

> xmlchange -file env_conf.xml -id RUN_TYPE -val branch
> xmlchange -file env_conf.xml -id RUN_REFCASE -val b40.B2000
> xmlchange -file env_conf.xml -id RUN_REFDATE -val 0001-02-01

For a hybrid run, modify env_conf.xml to start up from b40.B2000 at year 0001-02-
01.

> xmlchange -file env_conf.xml -id RUN_TYPE -val hybrid
> xmlchange -file env_conf.xml -id RUN_REFCASE -val b40.B2000
> xmlchange -file env_conf.xml -id RUN_REFDATE -val 0001-02-01

For a branch run, env_conf.xml for b40.B2000p should be identical to b40.B2000,
except for the $RUN_TYPE setting. In addition, any modifications introduced
into ~/cesm1/b40.B2000/Buildconf/$component.buildnml.csh, should be
re-introduced into b40.B2000p.

Configure and build the case executable.

> configure -case
> b40.B200p.yellowstone.build

Prestage the necessary restart/initial data in $RUNROOT (assumed to be
/ptmp/$user/b40.B2000p/run). Note that /ptmp/$user/b40.B2000p/run was
created during the build. Assume that the restart/initial data is on the NCAR mass
store.

> cd /ptmp/$user/b40.B2000br/run
> hsi "cd /CCSM/csm/b40.B2000/rest/0001-02-01-00000; get *"

It is assumed that you already have a valid load-balanced scenario. Go back to the
case directory, set the job to run 12 model months, use an editor to change the time
limit in the run file to accommodate a 12-month run, then submit the job.

> ~/cesm1/b40.B2000p
> xmlchange -file env_run.xml -id STOP_OPTION -val nmonths
> xmlchange -file env_run.xml -id STOP_N -val 12
> # use an editor to change b40.B2000.yellowstone.run "#BSUB -W 1:30" to "#BSUB -W 6:00"
> bsub < b40.B2000p.yellowstone.run

Verify that the run succeeded.

> grep "SUCCESSFUL TERMINATION" poe.stdout.*

Change the run to a continuation run. Set it to resubmit itself 10 times so that it will
run a total of 11 years (including the initial year), then resubmit the case.

> xmlchange -file env_run.xml -id CONTINUE_RUN -val TRUE
> xmlchange -file env_run.xml -id RESUMIT -val 10
> bsub < b40.B2000p.yellowstone.run

Changing PE layout
This example modifies the PE layout for our original run, b40.B2000. We now target
the model to run on the jaguar supercomputer and modify our PE layout to use a
common load balance configuration for CESM on large CRAY XT5 machines.

74



Chapter 9. Use Cases

In our original example, b40.B2000, we used 128 pes with each component running
sequentially over the entire set of processors.

128-pes/128-tasks layout

Now we change the layout to use 1728 processors and run the ice, lnd, and cpl models
concurrently on the same processors as the atm model while the ocean model will run
on its own set of processors. The atm model will be run on 1664 pes using 832 MPI
tasks each threaded 2 ways and starting on global MPI task 0. The ice model is run
using 320 MPI tasks starting on global MPI task 0, but not threaded. The lnd model
is run on 384 processors using 192 MPI tasks each threaded 2 ways starting at global
MPI task 320 and the coupler is run on 320 processors using 320 MPI tasks starting
at global MPI task 512. The ocn model uses 64 MPI tasks starting at global MPI task
832.

1728-pes/896-tasks layout

Since we will be modifying env_mach_pes.xml after configure was invoked, the
following needs to be invoked:

> configure -cleanmach
> xmlchange -file env_mach_pes.xml -id NTASKS_ATM -val 832
> xmlchange -file env_mach_pes.xml -id NTHRDS_ATM -val 2
> xmlchange -file env_mach_pes.xml -id ROOTPE_ATM -val 0
> xmlchange -file env_mach_pes.xml -id NTASKS_ICE -val 320
> xmlchange -file env_mach_pes.xml -id NTHRDS_ICE -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_ICE -val 0
> xmlchange -file env_mach_pes.xml -id NTASKS_LND -val 192
> xmlchange -file env_mach_pes.xml -id NTHRDS_LND -val 2
> xmlchange -file env_mach_pes.xml -id ROOTPE_LND -val 320
> xmlchange -file env_mach_pes.xml -id NTASKS_CPL -val 320
> xmlchange -file env_mach_pes.xml -id NTHRDS_CPL -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_CPL -val 512
> xmlchange -file env_mach_pes.xml -id NTASKS_OCN -val 64
> xmlchange -file env_mach_pes.xml -id NTHRDS_OCN -val 1
> xmlchange -file env_mach_pes.xml -id ROOTPE_OCN -val 832
> configure -mach

Note that since env_mach_pes.xml has changed, the model has to be reconfigured
and rebuilt.

It is interesting to compare the timings from the 128- and 1728-processor runs. The
timing output below shows that the original model run on 128 pes cost 851 pe-
hours/simulated_year. Running on 1728 pes, the model cost more than 5 times as
much, but it runs more than two and a half times faster.

128-processor case:
Overall Metrics:

75



Chapter 9. Use Cases

Model Cost: 851.05 pe-hrs/simulated_year (scale= 1.00)
Model Throughput: 3.61 simulated_years/day

1728-processor case:
Overall Metrics:
Model Cost: 4439.16 pe-hrs/simulated_year (scale= 1.00)
Model Throughput: 9.34 simulated_years/day

See understanding load balancing CESM for detailed information on understanding
timing files.

Setting CAM output fields
In this example, we further modify our b40.B2000p code to set various CAM output
fields. The variables that we set are listed below. See CAM Namelist Variables1 for a
complete list of CAM namelist variables.

avgflag_pertape

Sets the averaging flag for all variables on a particular history file series. Default
is to use default averaging flags for each variable. Average (A), Instantaneous
(I), Maximum (X), and Minimum (M).

nhtfrq

Array of write frequencies for each history files series.

When NHTFRQ(1) = 0, the file will be a monthly average. Only the first file series
may be a monthly average.

When NHTFRQ(i) > 0, frequency is input as number of timesteps.

When NHTFRQ(i) < 0, frequency is input as number of hours.

mfilt

Array of number of time samples to write to each history file series (a time sam-
ple is the history output from a given timestep).

ndens

Array specifying output format for each history file series. Valid values are 1 or
2. ’1’ implies output real values are 8-byte and ’2’ implies output real values are
4-byte. Default: 2,2,2,2,2,2

fincl1 = ’field1’, ’field2’, ...

List of fields to add to the primary history file.

fincl[2..6] = ’field1’, ’field2’, ...

List of fields to add to the auxiliary history file.

fexcl1 = ’field1’, ’field2’, ...

List of field names to exclude from the default primary history file (default fields
on the Master Field List).

fexcl[2..6] = ’field1’, ’field2’,...

List of the field names to exclude from the auxiliary history files.

In the $CASEROOT/Buildconf/cam.buildnml.csh file, namelists are delineated with
an ampersand followed by the namelist’s name. Namelists end with a slash. For ex-
ample, the first namelist might look like this:

76



Chapter 9. Use Cases

& phys_ctl_nl
atm_dep_flux = .false.
deep_scheme = ’ZM’
eddy_scheme = ’HB’
microp_scheme = ’RK’
shallow_scheme = ’Hack’
srf_flux_avg = 0
/

Just before the ending slash for the cam_inparm namelist, add the following lines:

avgflag_pertape = ’A’,’I’
nhtfrq = 0 ,-6
mfilt = 1 , 30
ndens = 2 , 2
fincl1 = ’FSN200’,’FSN200C’,’FLN200’,

’FLN200C’,’QFLX’,’PRECTMX:X’,’TREFMXAV:X’,’TREFMNAV:M’,
’TSMN:M’,’TSMX:X’

fincl2 = ’T’,’Z3’,’U’,’V’,’PSL’,’PS’,’TS’,’PHIS’

avgflag_pertape specifies how the output data will be averaged. In the first output
file, b40.2000p.cam2.h0.yyyy-mm.nc, data will be averaged monthly. In the second
output file, b40.2000p.cam2.h1.yyyy-mm-dd.nc, data will be instantaneous.

nhtfrq sets the frequency of data writes, so b40.2000p.cam2.h0.yyyy-mm.nc will be
written as a monthly average, while b40.2000p.cam2.h1.yyyy-mm-dd.nc will con-
tain time slices that are written every 6 hours.

mfilt sets the model to write one time sample in b40.2000p.cam2.h0.yyyy-mm.nc
and 30 time samples in b40.2000p.cam2.h1.yyyy-mm-dd.nc.

ndens sets both files to have 32-bit netCDF format output files.

fincl1 sets the output fields for b40.2000p.cam2.h0.yyyy-mm.nc. A complete list of
the CAM output fields appears here. In this example, we’ve asked for more variables
than will fit on a Fortran line. As you can see, it is all right to split variable lists across
lines. Also in this example, we’ve asked for maximum values of TREFMXAV and
TSM, and minimum values of TREFMNAV and TSMN.

fincl2 sets the output fields for b40.2000p.cam2.h1.yyyy-mm-dd.nc, much the same as
fincl1 sets output fields for b40.2000p.cam2.h0.yyyy-mm.nc, only in this case, we are
asking for instantaneous values rather than averaged values, and choosing different
output fields.

Setting CAM forcings
To set the greenhouse gas forcings, we must first understand the namelist variables
associated with them. See CAM Namelist Variables2 for a complete list of CAM
namelist variables.

scenario_ghg

Controls treatment of prescribed co2, ch4, n2o, cfc11, cfc12 volume mixing ratios.
May be set to ’FIXED’ or ’RAMPED’ or ’RAMP_CO2_ONLY’.

FIXED => volume mixing ratios are fixed and have either default or namelist
input values.

RAMPED => volume mixing ratios are time interpolated from the dataset spec-
ified by bndtvghg.

RAMP_CO2_ONLY => only co2 mixing ratios are ramped at a rate
determined by the variables ramp_co2_annual_rate, ramp_co2_cap, and
ramp_co2_start_ymd.

77



Chapter 9. Use Cases

Default: FIXED

bndtvghg

Full pathname of time-variant boundary dataset for greenhouse gas surface val-
ues. Default: set by build-namelist.

rampyear_ghg

If scenario_ghg is set to "RAMPED" then the greenhouse gas surface values are
interpolated between the annual average values read from the file specified by
bndtvghg. In that case, the value of this variable (> 0) fixes the year of the lower
bounding value (i.e., the value for calendar day 1.0) used in the interpolation.
For example, if rampyear_ghg = 1950, then the GHG surface values will be the
result of interpolating between the values for 1950 and 1951 from the dataset.
Default: 0

To set the following variables to their associated values, edit
$CASEROOT/Buildconf/cam.buildnml.csh and add the following to the
cam_inparm namelist:

scenario_ghg = ’RAMPED’
bndtvghg = ’$DIN_LOC_ROOT/atm/cam/ggas/ghg_hist_1765-2005_c091218.nc’
rampyear_ghg = 2000

Initializing the ocean model with a spun-up initial condition
The startup/spunup initialization option is a specialized active-ocean model subop-
tion available in the CESM1.0 POP2 model which can be used only in conjunction
with a CESM "startup" case; it is not designed to work with "hybrid" or "branch"
cases.

The recommended method for initializing the CESM active ocean model (POP2) in a
CESM startup case is to use the default settings; these initialize the ocean model from
Levitus initial conditions and a state of rest. Occasionally, however, researchers are
interested in a startup run in which only the ocean model is initialized from a "spun
up" ocean condition generated from a previous CESM run. To accommodate their
request, a nonstandard method of initializing POP2 in a startup case was developed.
It is called the startup_spunup option. It is a research option that is designed for use
by expert users only.

Because of the complex interactions between the ocean-model parameterizations
used to generate the spun-up case and those used in the new startup case, it is
impossible to provide a single recommended spun-up ocean initial condition for all
circumstances. Instead, researchers must carefully select an existing solution whose
case conditions closely match those in the new case. A mismatch of options between
the spun-up case and the new case can result in scientifically invalid solutions.

When a startup_spunup case is necessary, use this procedure:

1. Currently, the default RUN_TYPE XML variable is set to "hybrid". User’s will
need to change the RUN_TYPE to "startup" after running create_newcase us-
ing the xmlchange command as follows:
> create_newcase -case ~/cesm1/b40.B2000ocn \

-mach yellowstone \
-compset B20TR \
-res 0.9x1.25_gx1v6

> cd ~/cesm1/b40.B2000ocn
> configure -case
> xmlchange -file env_run.xml -id RUN_TYPE -val startup

78



Chapter 9. Use Cases

2. Specify the startup_spunup option in the pop2_in namelist file by editing the
$CASE/Buildconf/pop2.buildnml.csh script. Find the namelist init_ts_nml
and change

set init_ts_suboption = ’null’ to

set init_ts_suboption = ’spunup’.

3. The ocean restart filename is of the form ${CASE_SP}.pop.r.$date, where $date
is the model date of your spun-up dataset. If the ocean restart files were written
in binary format, a companion ascii-formatted restart "header" file will also
exist. The companion header file will have the same name as the restart file,
except that it will have the suffix ".hdr" appended at the end of the filename.
You must copy both the binary restart file and the header file to your data
directory.

4. The spun-up ocean restart and restart header files must be available to your
new case. Copy them directly into $RUNDIR. It is critically important to copy
both the binary restart file and its companion header file to the $RUNDIR.
> cp ${CASE_SP}.pop.r.$date $RUNDIR
> cp ${CASE_SP}.pop.r.${date}.hdr $RUNDIR

5. Redefine the ocean-model initial-condition dataset by editing
$CASE/Buildconf/pop2.buildnml.csh. Go to the pop2_in namelist section
and edit the init_ts_nml namelist variable init_ts_file. Change

set init_ts_file = ’$init_ts_filename’ to

set init_ts_file = ’${CASE_SP}.pop.r.$date’

Note that the model will automatically look for the
${CASE_SP}.pop.r.${date}.hdr file in $RUNDIR.

6. Build and run as usual.

Taking a run over from another user
If you ever a need to take over a production run from another user, follow this pro-
cedure:

1. Create a clone of the production case. The case name needs to be the same, but
the new filepath needs to be different.
> $CCSMROOT/scripts/create_clone -clone $CASEROOT -case $NEWCASEROOT

2. Configure the case for the new user:
> cd $NEWCASEROOT
> configure -case

3. Rebuild for the new user:
> ./$CASE.$MACH.build

4. Copy the restart and rpointer files from the original run directory:
> cp $CASEROOT/run/$CASE* $NEWCASEROOT/run/.
> cp $CASEROOT/run/rpointer* $NEWCASEROOT/run/.

5. Copy the archive directory contents:
> cp $ORIGDIR/archive/$CASE $NEWDIR/archive/$CASE

6. Submit the run:
> bsub < $CASE.$MACH.run

Here is an example:

79



Chapter 9. Use Cases

> $CCSMROOT/scripts/create_clone -clone /user/b40.1850 -case /newuser/b40.B2000
> cd /newuser/b40.B2000
> configure -case
> ./b40.B2000.yellowstone.build
> cp /user/b40.B2000/run/b40.B2000* /newuser/b40.B2000/run/.
> cp /user/b40.B2000/run/rpointer* /newuser/b40.B2000/run/.
> cp -r /ptmp/user/archive/b40.B2000/* /ptmp/newuser/archive/b40.B2000/.
> bsub < b40.B2000.yellowstone.run

Use of an Earth System Modeling Framework (ESMF) library and
ESMF interfaces

CESM supports either the default MCT based component interfaces or the ESMF
component interfaces. In both cases, the driver and component models remain fun-
damentally the same.

The ESMF component interface implementation exists in CESM to allow CESM
model components to interact with other coupled systems using ESMF coupling
standards as well as to support further development and testing of an ESMF driver
or ESMF couplers.

In addition, when using the ESMF component interface, if ESMF is compiled with
the Xerces XML library, CESM will automatically generate a metadata file using the
ESMF attribute capabilities; this XML metadata file provides CIM (Common Infor-
mation Model) compliant documentation of CESM and the model components. Af-
ter a CESM case job is completed, a file named, CESM_Component.xml, can be found
within the run directory. For more details on ESMF Attributes and the generated XML
file, refer to the ESMF Reference Manual section on the Attribute class 3. For details
on the CIM, visit the European Union’s METAFOR project site4.

The ESMF implementation in CESM1 requires ESMF version 5.2.0p1.

ESMF is NOT required or provided by CESM1. It must be downloaded and installed
separately. It is safest to compile ESMF and CESM with identical compilers and mpi
versions. It may be possible to use versions that are different but compatible; how-
ever, it is hard to predict which versions will be compatible and using different ver-
sions can result in problems that are difficult to track down. In addition, depending
on whether or not you wish to generate XML metadata files using the ESMF attribute
functionality, you may also need to download and install the Apache Xerces C++ li-
brary; details on using the Xerces library with ESMF are described later in this docu-
ment.

There are three possible modes of interaction between CESM and ESMF.

1. No linking to an external ESMF library. CESM uses its own implementation of
ESMF timekeeping interfaces (default).

To run with the MCT based component interfaces and the CESM time manager,
set the following environment variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "MCT"
- set USE_ESMF_LIB to "FALSE"

2. Linking with an ESMF library to use the ESMF time manager but continued
use of the MCT based component interfaces.

To run with the MCT based component interfaces and ESMF time manager, set
the following environment variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "MCT"

80



Chapter 9. Use Cases

- set USE_ESMF_LIB to "TRUE"
- set ESMF_LIBDIR to a valid installation directory of ESMF version 5.2.0p1

3. Linking with an ESMF library in order to use ESMF component interfaces and
generate the XML metadata file. In this mode ESMF timekeeping is also acti-
vated.

To run with the ESMF component interfaces and ESMF time manager, set the
following environment variables
- cd to your case directory
- edit env_build.xml
- set COMP_INTERFACE to "ESMF"
- set USE_ESMF_LIB to "TRUE"
- set ESMF_LIBDIR to a valid installation directory of ESMF version 5.2.0p1

The ESMF library can be activated in two ways in CESM. The primary way is via
the ESMF_LIBDIR environment variable in the env_build.xml file described above.
The secondary way is via a system environment variable called ESMFMKFILE. If this
environment variable is set either through a system or module command, then the
ESMF library will be picked up by the CESM scripts, but the local CESM variable,
ESMF_LIBDIR, will always have precedence.

When compiling ESMF for CESM with the intent of generating an attributes XML
metadata file, the Xerces XML library must be installed and ESMF must be configured
to use it. The following environment variables must be set:

• Set ESMF_XERCES to "standard"

• Set ESMF_XERCES_INCLUDE to the Xerces include directory

• Set ESMF_XERCES_LIBPATH to the Xerces library directory

If these environment variables are not set when ESMF is compiled, and CESM is run
using the ESMF component interface, error messages will be written to the PET log
files indicating that the Xerces library is not available. The CESM run will continue
un-hindered, however an XML metadata file will not be generated.

For more detailed instructions on compiling ESMF with the Xerces library, see the
ESMF User’s Guide section on Building and Installing ESMF and the Xerces third-
party library 5.

To verify the correctness of the ESMF component interfaces in CESM, compute and
compare CESM global integrals with identical runs differing only in the use of the
MCT based and ESMF component interfaces. In both cases, the ESMF library should
be active to guarantee identical time manager values. In both runs, the ’INFO_DBUG’
parameter in env_run.xml should be set to 2 which activates the global integral diag-
nostics. A valid comparison would be a 10 day test from the same initial conditions.
The global integrals produced in the cpl log file should be identical in both cases.
This test can be setup manually as described above or a CME test can be carried out
which is designed to test this exact capability.

The following table contains combinations of CESM/ESMF release versions that are
tested and known to work together:

Table 9-1. Recommmended Software Package Combinations

CESM Version ESMF Version

1.0 4_0_0rp2

1.0.3 5_2_0p1

81



Chapter 9. Use Cases

Notes
1. http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-pub/

2. http://www.cesm.ucar.edu/cgi-bin/eaton/namelist/nldef2html-pub/

3. http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_5_2_0p1/ESMF_refdoc/node6.html#SECTION06020000000000000000

4. http://metaforclimate.eu/

5. http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_5_2_0p1/ESMF_usrdoc/node9.html#SECTION00093500000000000000

82



Chapter 10. Troubleshooting

Troubleshooting create_newcase
Generally, create_newcase errors are reported to the terminal and should provide
some guidance about what caused the error.

If create_newcase fails on a relatively generic error, first check carefully that the com-
mand line arguments match the interfaces specification. Type

> create_newcase -help

and review usage.

Troubleshooting configure
Generally, configure errors are reported to the terminal and should provide some
guidance about what caused the error. Most of this section deals with the "-case"
option of configure which is the biggest step in setting up a case and the supporting
input files and scripts. The configure step is fairly extensive and a brief description
of what configure does follows. $CASEROOT is the top level case directory (i.e. the
location where the env xml files and the configure script is located for a specific case).

The first thing configure does is load the case environment variables. In general,
this is done by sourcing the $CASEROOT/Tools/ccsm_getenv. For more information
about the environment variables, see the Section called What are CESM1 env variables
and env xml files? in Chapter 11

Then the first major step for configure is to run the script
$CASEROOT/Tools/generate_resolved.csh. This cycles through each of the
component template files in $CASEROOT/Tools/Templates sequentially. These
component template files are copied from locations in the component source code
by create_newcase when the case is created. Each component template file generates
a component buildnml.csh and buildexe.csh script in $CASEROOT/Buildconf
based on the resolution, configuration, and other env settings. Generally, an error in
this phase of configure will point to a specific component. Begin by debugging
the component template file in $CASEROOT/Tools/Templates. The component
template filename will be something like cam.cpl7.template for the cam component.
If there is a bug in the component template file, then it’s probably important to fix
the original copy of the template file. These can be found in the create_newcase
scripts (i.e. search for the string, template).

The specific implementation of the component template files is very much compo-
nent dependent. However, each must generate a buildnml.csh script in the $CASE-
ROOT/Buildconf directory to generate namelist input on-the-fly. Each template file
must generate a buildexe.csh script in the same $CASEROOT/Buildconf directory
to support the build of that component. And each template file must support gen-
eration of input_data_list files in the $CASEROOT/Buildconf directory either at the
configure or build step to specify the required input files for that configuration and
component.

Next, configure runs the $CASEROOT/Tools/generate_batch.csh script. This script
generates the build and run scripts for the case. This is partly accomplished by run-
ning the mkbatch.$MACH script for the particular machine. That script is located
in $CCSMROOT/scripts/ccsm_utils/Machines. If there are problems with the re-
sulting build or run script, the error can usually be traced to the setup of the mk-
batch.$MACH machine file.

For instance an error like this

> create_newcase -case ~/cesm1/b40.B2000bad \

83



Chapter 10. Troubleshooting

-res 0.23x0.31_0.23x0.31 \
-mach yellowstone \
-compset B

> cd ~/cesm1/b40.B2000bad
> configure -case

Generating resolved namelist, prestage, and build scripts
build-namelist - No default value found for ncdata
user defined attributes:
key=ic_md val=00010101
Died at /user/ccsmroot/models/atm/cam/bld/build-namelist line 2019.
ERROR: generate_resolved.csh error for atm template
configure error: configure generated error in attempting to created resolved scripts

indicates the generate_resolved.csh script failed in the atm template, which is the
cam template for this compset. It also reports that the cam build-namelist step in the
cam template failed at line 2019. In this case, CAM could not find a valid value of
ncdata from its default_namelist.xml file. To fix this particular problem, the user
can supply an alternative initial dataset and the update the value in either the
CAM_CONFIG_OPTS values or in the SourceMods/src.cam/user_nl_cam.

Troubleshooting job submission problems
This section addresses problems with job submission. Most of the problems associ-
ated with submission or launch are very site specific.

First, make sure the runscript, $CASE.$MACH.run, is submitted using the correct
batch job submission tool, whether that’s qsub, bsub, or something else, and for in-
stance, whether a redirection "<" character is required or not.

Review the batch submission options being used. These probably appear at the top
of the $CASE.$MACH.run script but also may be set on the command line when
submitting a job. Confirm that the options are consistent with the site specific batch
environment, and that the queue names, time limits, and hardware processor request
makes sense and is consistent with the case running.

Review the job launch command in the $CASE.$MACH.run script to make sure it’s
consistent with the site specific recommended tool. This command is usually an
mprun, mpiexec, aprun, or something similar. It can be found just after the string
"EXECUTION BEGINS HERE" in the $CASE.$MACH.run script.

The batch and run aspects of the $CASE.$MACH.run script is setup
by configure and uses a machine specific mkbatch.$MACH script in the
$CCSMROOT/scripts/ccsm_utils/Machines directory. If the run script is not
producing correct batch scripts or job launching commands, the mkbatch.$MACH
script probably needs to be updated.

Troubleshooting runtime problems
To check that a run completed successfully, check the last several lines of the cpl.log
file for the string " SUCCESSFUL TERMINATION OF CPL7-CCSM ". A successful
job also usually copies the log files to the directory $CASEROOT/logs.

Note: The first things to check if a job fails are whether the model timed out, whether a
disk quota limit was hit, whether a machine went down, or whether a file system became
full. If any of those things happened, take appropriate corrective action and resubmit the
job.

84



Chapter 10. Troubleshooting

If it’s not clear any of the above caused a case to fail, then there are several places to
look for error messages in CESM1.

• Go the $RUNDIR directory. This directory is set in the env_build.xml file. This is
the directory where CESM runs. Each component writes its own log file, and there
should be log files there for every component (i.e. of the form cpl.log.yymmdd-
hhmmss). Check each component log file for an error message, especially at the
end or near the end of each file.

• Check for a standard out and/or standard error file in the $CASEROOT directory.
The standard out/err file often captures a significant amount of extra CESM out-
put and it also often contains significant system output when the job terminates.
Sometimes, a useful error message can be found well above the bottom of a large
standard out/err file. Backtrack from the bottom in search of an error message.

• Go the $RUNDIR directory. Check for core files and review them using an appro-
priate tool.

• Check any automated email from the job about why a job failed. This is sent by the
batch scheduler and is a site specific feature that may or may not exist.

• Check the archive directory. If a case failed, the log files or data may still have been
archived. The archiver is turned on if DOUT_S is set to TRUE in env_run.xml. The
archive directory is set by the env variable DOUT_S_ROOT and the directory to
check is $DOUT_S_ROOT/$CASE.

A common error is for the job to time out which often produces minimal error mes-
sages. By reviewing the daily model date stamps in the cpl.log file and the time
stamps of files in the $RUNDIR directory, there should be enough information to
deduce the start and stop time of a run. If the model was running fine, but the batch
wall limit was reached, either reduce the run length or increase the batch time limit
request. If the model hangs and then times out, that’s usually indicative of either a
system problem (an MPI or file system problem) or possibly a model problem. If a
system problem is suspected, try to resubmit the job to see if an intermittent prob-
lem occurred. Also send help to local site consultants to provide them with feedback
about system problems and to get help.

Another error that can cause a timeout is a slow or intermittently slow node. The
cpl.log file normally outputs the time used for every model simulation day. To review
that data, grep the cpl.log file for the string, tStamp

> grep tStamp cpl.log.* | more

which gives output that looks like this:

tStamp_write: model date = 10120 0 wall clock = 2009-09-28 09:10:46 avg dt = 58.58 dt = 58.18
tStamp_write: model date = 10121 0 wall clock = 2009-09-28 09:12:32 avg dt = 60.10 dt = 105.90

and review the run times for each model day. These are indicated at the end of each
line. The "avg dt = " is the running average time to simulate a model day in the current
run and "dt = " is the time needed to simulate the latest model day. The model date
is printed in YYYYMMDD format and the wall clock is the local date and time. So in
this case 10120 is Jan 20, 0001, and it took 58 seconds to run that day. The next day,
Jan 21, took 105.90 seconds. If a wide variation in the simulation time is observed for
typical mid-month model days, then that is suggestive of a system problem. How-
ever, be aware that there are variations in the cost of the CESM1 model over time.
For instance, on the last day of every simulated month, CESM1 typically write netcdf
files, and this can be a significant intermittent cost. Also, some models read data mid
month or run physics intermittently at a timestep longer than one day. In those cases,
some run time variability would be observed and it would be caused by CESM1, not
system variability. With system performance variability, the time variation is typi-
cally quite erratic and unpredictable.

Sometimes when a job times out, or it overflows disk space, the restart files will get
mangled. With the exception of the CAM and CLM history files, all the restart files
have consistent sizes. Compare the restart files against the sizes of a previous restart.

85



Chapter 10. Troubleshooting

If they don’t match, then remove them and move the previous restart into place be-
fore resubmitting the job. Please see restarting a run.

On HPC systems, it is not completely uncommon for nodes to fail or for access to
large file systems to hang. Please make sure a case fails consistently in the same place
before filing a bug report with CESM1.

86



Chapter 11. Frequently Asked Questions (FAQ)

What are the directories and files in my case directory?
The following describes many of the files and directories in the $CASEROOT direc-
tory.

Buildconf

is the directory where the buildnml and buildexe component scripts are gener-
ated by configure. The input_data_list files are also generated by configure or
the buildnml scripts and copied here.

CaseDocs

is a directory where copies of the latest namelist/text input files from the
$RUNDIR are stored. These exist only to help document the case setup and run.

LockedFiles

is the directory that holds copies of the locked files.

MachinesHist

is a directory where previous case configurations are stored. In other words,
when configure -clean is run, the current configured scripts are copied into this
directory, so when configure -case is subsequently run, there is an opportunity
to review and compare previous setups.

Macros.$MACH

is the Makefile Macros file for the current configuration. The Makefile is located
in the Tools directory and is identical on all machines. The Macros file is a ma-
chine and compiler dependent file. This file is locked during the build step.

README.case

provides a summary of the commands used to generate this case.

SourceMods

contains directories for each component where case specific source code modifi-
cations can be included. The source files in these directories will always be used
in preference to the source code in CCSMROOT. This feature allows users to
modify CESM source code on a case by case basis if that preferable over making
modifications in the CCSMROOT sandbox.

$CASE.$MACH.build

is the script that is run interactively to build the CESM model.

$CASE.$MACH.clean_build

is the script that cleans the CESM build.

$CASE.$MACH.l_archive

is the script that is submitted to the batch queue to archive CESM data to the
long-term archive disk, like an hpss or mass storage system.

$CASE.$MACH.run

is the script that is submitted to the batch queue to run a CESM job. This script
could also be run interactively if resources allow.

87



Chapter 11. Frequently Asked Questions (FAQ)

check_input_data

is a tool that checks for missing input datasets and provides a capability for
exporting them to local disk.

configure

is the script that is run to generate files in Buildconf and the build and run scripts
for a case.

create_production_test

is a tool that generates an exact restart test in a separate directory based on the
current case.

env_*.xml files

contain variables used to setup, configure, build, and run CESM.

logs

is a directory that contains a copy of the component log files from successful case
runs.

timing

is a directory that contains timing output from each successful case run.

xmlchange

is a script that supports changing xml variables in the env files.

$CASEROOT/Tools

contains many scripts that are used to setup and configure the CESM model as
well as run it. Some of particular note are

• Makefile is the Makefile that will be used for the build.
• Templates is a directory that contains all the component template files used dur-

ing the configure phase to generate buildnml and buildexe scripts in the $CASE-
ROOT/Buildconf directory.

• ccsm_buildexe.csh is invoked by $CASEROOT/$CASE.$MACH.build to generate
the model executable. This script calls the component buildexe scripts in Buildconf.

• ccsm_buildnml.csh is invoked by $CASEROOT/$CASE.$MACH.build to generate
the component namelists in $RUNROOT. This script calls the component buildnml
scripts in Buildconf.

• ccsm_check_lockedfiles checks that any files in the $CASEROOT/LockedFiles/ di-
rectory match those in the $CASEROOT directory. This helps protect users from
overwriting variables that should not be changed.

• ccsm_getenv converts the xml variables in $CASEROOT to csh environmental vari-
ables.

• ccsm_l_archive.csh is the script that does long-term archiving of model data as part
of the $CASE.$MACH.l_archive batch job.

• ccsm_postrun.csh may run the short & long-term archivers, resubmit the run
script, and run the timing script.

• ccsm_prestage.csh checks that required input datasets are available.
• generate_batch.csh is the script that generates resolved run and long-term archiv-

ing batch scripts by configure.
• generate_resolved.csh generates resolved buildnml and buildexe scripts in the

$CASEROOT/Buildconf directory for model components.
• getTiming.csh generates the timing information.
• getTiming.pl generates timing information and is used by getTiming.csh.
• mkDepends generates Makefile dependencies in a form suitable for inclusion into

a Makefile.

88



Chapter 11. Frequently Asked Questions (FAQ)

• perf_summary.pl generates timing information.
• st_archive.sh is the short-term archive script. It moves model output out of run

directory to the short-term archive directory. Associated with DOUT_S and
DOUT_S_ROOT env variables in env_run.xml.

• taskmaker.pl derives pe counts and task and thread geometry info based on env
var values set in the env_mach_pes file.

• xml2env converts env_*xml files to shell environment variable files that are then
sourced for inclusion in the model environment. Used by the ccsm_getenv script.

What are CESM1 env variables and env xml files?
CESM1 cases are configured largely through setting what CESM1 calls "environment
variables". These actually appear to the user as variables defined in xml files. Those
files appear in the case directory once a case is created and are named something
like env_*.xml. They are converted to actual environment variables via a csh script
called ccsm_getenv. That script calls a perl script called xml2env that converts the xml
files to shell files that are then sourced and removed. The ccsm_getenv and xml2env
exist in the $CASEROOT/Tools directory. The environment variables are specified in
xml files to support extra automated error checking and automatic generation of env
variable documentation. If you want to have the ccsm environment variables in your
local shell environment, do the following

> cd $CASEROOT
> source ./Tools/ccsm_getenv

You must run the ccsm_getenv from the CASEROOT directory exactly as shown
above. There are multiple env_*.xml files including env_case.xml, env_conf.xml,
env_mach_pes.xml, env_build.xml, and env_run.xml. To a large degree, the different
env files exist so variables can be locked in different phases of the case setup, build,
and run process. For more info on locking files, see the Section called Why is there file
locking and how does it work?. The important point is that env_case.xml variables
cannot be changed after create_newcase is invoked. env_conf and env_mach_pes
cannot be changed after configure is invoked unless you plan to reconfigure the
case. env_build variables cannot be changed after the model is built unless you
plan to clean and rebuild. env_run variables can be changed anytime. The CESM1
scripting software checks that xml files are not changed when they shouldn’t be.

CESM recommends using the xmlchange tool to modify env variables. This will de-
crease the chance that typographical errors will creep into the xml files. Conversion of
the xml files to environment variables can fail silently with certain xml format errors.
To use xmlchange, do, for instance,

> cd $CASEROOT
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nmonths
> ./xmlchange -file env_run.xml -id STOP_N -val 6

which will change the variables STOP_OPTION and STOP_N in the file env_run.xml
to the specified values. The "-warn" option to xmlchange also makes sure you aren’t
overwriting a current value in a field. And the "-append" option to xmlchange keeps
the current value in a field and just appends a new value on the end. It can be useful to
know the value was merely appended and the previous value wasn’t inadvertently
changed as well. The xml files can be edited manually, but users should take care
not to introduce any formatting errors that could lead to incomplete env settings. If
there appear to be problems with the env variables (i.e. if the model doesn’t seem to
have consistent values compared to what’s set in the xml files), then confirm that the
env variables are being set properly. There are a couple of ways to do that. First, run
the ccsm_getenv script as indicated above and review the output generated by the
command "env". The env variables should match the xml settings. Another option
is to edit the $CASEROOT/Tools/ccsm_getenv script and comment out the line "rm
$i:r". That should leave the shell env files around, and they can then be reviewed.

89



Chapter 11. Frequently Asked Questions (FAQ)

The latter approach should be undone as soon as possible to avoid problems running
ccsm_getenv later.

How do I modify the value of CESM env variables?
CESM recommends using the xmlchange tool to modify env variables. xmlchange
supports error checking as part of the implementation. Also, using xmlchange will
decrease the chance that typographical errors will creep into the xml files. Conversion
of the xml files to environment variables can fail silently with certain xml format
errors. To use xmlchange, do, for instance,

> cd $CASEROOT
> ./xmlchange -file env_run.xml -id STOP_OPTION -val nmonths
> ./xmlchange -file env_run.xml -id STOP_N -val 6

which will change the variables STOP_OPTION and STOP_N in the file env_run.xml
to the specified values. Use the "-warn" option to warn you so you don’t overwrite a
field that currently has a value. And use the "-append" option to perserve the current
field and add a new bit on the end of it. The xml files can be edited manually, but users
should take care not to introduce any formatting errors that could lead to incomplete
env settings. See also .

Why aren’t my env variable changes working?
It’s possible that a formatting error has been introduced in the env xml files. This
would lead to problems in setting the env variables. If there appear to be problems
with the env variables (i.e. if the model doesn’t seem to have consistent values com-
pared to what’s set in the xml files), then confirm that the env variables are being set
properly. There are a couple of ways to do that. First, run the ccsm_getenv script via

> cd $CASEROOT
> source ./Tools/ccsm_getenv
> env

and review the output generated by the command "env". The env
variables should match the xml settings. Another option is to edit the
$CASEROOT/Tools/ccsm_getenv script and comment out the line "rm $i:r". That
should leave the shell env files around, and they can then be reviewed. The
latter approach should be undone as soon as possible to avoid problems running
ccsm_getenv later.

Why is there file locking and how does it work?
In CESM, there are several different env xml files. These include env_case.xml,
env_conf.xml, env_mach_pes.xml, env_build.xml, and env_run.xml. These
are organized so variables can be locked during different phases of the case
configuration, build, and run. Locking variables is a feature of CESM that prevents
users from changing variables after they have been resolved (used) in other parts of
the scripts system. The variables in env_case are locked when create_newcase is
called. The env_conf and env_mach_pes variables are locked when configure is
called. The env_build variables are locked when CESM is built, and the env_run
variables are never locked and can be changed anytime. In addition, the Macros file
is locked as part of the build step. The $CASEROOT/LockedFiles directory saves
copies of the xml files to facilitate the locking feature. In summary

90



Chapter 11. Frequently Asked Questions (FAQ)

• env_case.xml is locked upon invoking create_newcase and cannot be
unlocked. To change settings in env_case, a new case has to be generated with
create_newcase.

• env_conf.xml and env_mach_pes.xml are locked after running configure -case.
After changing variable values in these files, reconfigure the model using "config-
ure -cleanall" (or some variation) and then "configure -case".

• Macros.$MACH and env_build.xml are locked upon the successful completion of
$CASE.MACH.build. Both Macros.$MACH and env_build.xml can be unlocked
by invoking $CASE.$MACH.cleanbuild and then the model should be rebuilt.

How do I change processor counts and component layouts on
processors?

See the Section called Setting the case PE layout in Chapter 3 or the use case the Section
called Changing PE layout in Chapter 9.

What is pio?
The parallel IO (PIO) library is included with CESM1 and is automatically built as
part of the CESM build. Several CESM1 components use the PIO library to read
and/or write data. The PIO library is a set of interfaces that support serial netcdf,
parallel netcdf, or binary IO transparently. The implementation allows users to easily
configure the pio setup on the fly to change the method (serial netcdf, parallel netcdf,
or binary data) as well as various parameters associated with PIO to optimize IO
performance. The pio parameter settings are described in detail in the Section called
CESM Input/Output in Chapter 5.

CESM1 prefers that data be written in CF compliant netcdf format to a single file
that is independent of all parallel decomposition information. Historically, data was
written by gathering global arrays on a root processor and then writing the data from
the root processor to an external file using serial netcdf. The reverse process (read and
scatter) was done for reading data. This method is relatively robust but is not memory
scalable, performance scalable, or performance flexible. This lead to the introduction
of the PIO parallel IO library.

PIO works as follows. The PIO library is initialized and information is provided
about the method (serial netcdf, parallel netcdf, or binary data), and the number of
desired IO processors and their layout. The IO parameters define the set of processors
that are involved in the IO. This can be as few as one and as many as all processors.
The data, data name and data decomposition are also provided to PIO. Data is writ-
ten through the PIO interface in the model specific decomposition. Inside PIO, the
data is rearranged into a "stride 1" decomposition on the IO processors and the data
is then written serially using netcdf or in parallel using pnetcdf or netcdf4/hdf5.

There are several benefits associated with using PIO. First, even with serial netcdf, the
memory use can be significantly decreased because the global arrays are decomposed
across the IO processors and written in chunks serially. This is critical as CESM1
runs at higher resolutions where global arrays need to be minimized due to memory
availability. Second, pnetcdf can be turned on transparently potentially improving
the IO performance. Third, PIO parameters such as the number of IO tasks and their
layout can be tuned to reduce memory and optimize performance on a machine by
machine basis. Fourth, the standard global gather and write or read and global scatter
can be recovered by setting the number of io tasks to 1 and using serial netcdf.

CESM1 uses the serial netcdf implementation of PIO and pnetcdf is turned off in PIO
by default. To use pnetcdf, a pnetcdf library (like netcdf) must be available on the
local machine and PIO pnetcdf support must be turned on when PIO is built. This is
done as follows

91



Chapter 11. Frequently Asked Questions (FAQ)

1. Locate the local copy of pnetcdf. It must be version 1.1.1 or newer library

2. Set LIB_PNETCDF in the Macros file to the directory of the pnetcdf library (eg.
/contrib/pnetcdf1.1.1/lib).

3. Add PNETCDF_PIO to the pio CONFIG_ARGS variable in the Macros file, and
set it to the directory of the top level of a standard pnetcdf installation (eg /con-
trib/pnetcdf1.1.1).

4. Run the clean_build script if the model has already been built.

5. Run the build script to rebuilt pio and the full CESM1 system.

6. Change IO namelist settings to pnetcdf and set appropriate IO tasks and layout.

The PNETCDF_PIO variable tells pio to build with pnetcdf support turned on. The
LIB_PNETCDF variable tells the CESM Makefile to link in the pnetcdf library at the
link step of the CESM1 build.

There is an ongoing effort between CESM, pio developers, pnetcdf developers and
hardware vendors to understand and improve the IO performance in the various
library layers. To learn more about pio, see http://code.google.com/p/parallelio.1

How do I use pnetcdf?
See the Section called What is pio?

Is there more information about the coupler/driver
implementation?

Additional implementation details are provided in the the CESM coupler user guide2

about sequencing, parallel IO, performance, grids, threading, budgets, and other
items.

How do I create my own compset?
Several compsets are hardwired in the CESM1 release. "create_newcase -l" provides
a current listing of supported "out-of-the-box" compsets.

To create a customized compset,

> cd $CCSMROOT/scripts

Now copy sample_compset_file.xml to another file, e.g. my_compset.xml.

> cp sample_compset_file.xml my_compset.xml

Edit the file, my_compset.xml, to create your own compset configuration.
In particular, the NAME, SHORTNAME, DESC, and COMP_ variables
should be specified. The STATUS and CCSM_CCOST variables can be
ignored. Note: Other CESM env variables can also be added here. See
scripts/ccsm_utils/Case.template/config_compsets.xml for other variables that
might be related to compset configuration.

Next run create_newcase with the optional -compset_file argument.

> create_newcase -case mycase -res f19_g16 -compset MYCS -mach mymach -compset_file my_compset.xml

The case mycase should have been generated and the configuration should be con-
sistent with settings from the my_compset.xml file.

92



Chapter 11. Frequently Asked Questions (FAQ)

How do I add a new grid?
Support for several grids are hardwired in the CESM1 release. "create_newcase -l"
provides a current listing of supported "out-of-the-box" grids. In general, CESM grids
are associated with a specific combination of atmosphere, land, and ocean/ice grids
using a particular naming convention like f19_g16 for the f19 atm/lnd grid combined
with the g16 ocn/ice grid. The f19 atm/lnd grid is the shortname for the 1.9x2.5 finite
volume dycore grid. The g16 ocn/ice grid is the shortname for the gx1v6 one-degree
displaced pole grid. To add a new grid, just a few things need to be done. First, create
both an individual long and shortname for the individual grid (ie. f19=1.9x2.5) and
for the grid combination (ie. f19_g16). Then add that grid to the config_grid.xml file.
Next, update individual components to support those new grids. This usually begins
with the components template file, but may also require source code modifications
in some cases. More details are provided below.

The most difficult issue associated with adding a new grid is generating the required
grid files for components and generating any new mapping files required by the
coupler. On some level, the best advice is to mimic datasets that already exist for other
grids for your grid. That means, produce new datasets that follow the formatting
standard. CESM has some tools to help with this, and they should be outlined in
each components’ documentation. There is specific process for generating mapping
file in CESM. To learn more about this process, contact CESM directly.

To add a new grid, edit the scripts/ccsm_utils/config_grid.xml and add the
specific individual grids in the first section with their nx and ny sizes. The add the
grid combination as a section below specifying the individual grids for each compo-
nent, the mapping filenames, and other information. Just follow an example of an
existing grid definition. Once this is complete, the grid will be "supported" in the
CESM scripts and cases can be created with it.

The next step is to add support for the new grids in the components.
This would generally be done initially in the component template files,
models/*/*/bld/*.template . Each component handles this differently, so it’s up
to the user to decide which components need updates and how to best implement
the update. As part of the template update, new grid files and input datasets may
have been generated. These need to be added to each component on an individual
basis.

What calendars are supported in CESM?
In general, the only supported calendar in the CESM time manager is the 365 day or
no-leap calendar. This calendar has the standard 12 months, but it has 365 days every
year and 28 days in every February. Monthly averages in CESM are truly computed
over varying number of days depending on the month of the year.

A gregorian calendar is available if the ESMF time manager is used. To use the ESMF
time manager, the ESMF library has to be available locally and the ESMF library
has to be turned on in CESM. See using ESMF in CESM for more information about
setting up CESM with the ESMF library.

How do I add a new component model to CESM?
Support for specific components (ie. cam, pop, cice, clm, datm, etc) is hardwired into
the CESM scripts. To add a new component model, specifically a new atmosphere,
land, ocean, or sea ice component, several things need to be done. This section only
summarizes the tasks to complete without providing details. This is an advanced
exercise, and CESM may be able to provide addition assistance if resources are avail-
able. In the directions below, the model "cxyz" is a new land model that is going to
be added to CESM. There are two major parts. First, the component needs to be sup-

93



Chapter 11. Frequently Asked Questions (FAQ)

ported in the CESM scripts. Second, the component needs to be able to run under the
CESM driver.

• Add the new model under the appropriate models/"component" directory. For
instance add the cxyz model under models/lnd/cxyz.

• Add a template file to the new model under the bld directory. For instance, mod-
els/lnd/cxyz/bld/cxyz.cpl7.template. Use another models’ template file as a start-
ing point. The template file should be able to produce buildnml, buildexe, and in-
put_data_list files in the Buildconf directory.

• Edit scripts/create_newcase. Add support for the new model under the definition
of "my @comps". Also add a pointer to the template file under the variable "my
%templates".

• Add the new model as a valid option in the
scripts/ccsm_utils/Case.template/config_definition.xml file for
the specific component. For instance, for COMP_LND, add cxyz as a valid option.
Add any new env variables that are needed specifically for that component and
create a new group for them called, for instance, "conf_cxyz". Add the new model
to the list of components in scripts/ccsm_utils/Case.template/ConfigCase.pm if
any component specific env variables are added to the config_definition.xml file.

• Add a new compset that supports the new component to
scripts/ccsm_utils/Case.template/config_compsets.xml. For instance, add a new
compset called IZ that is based on the I_2000 compset but has cxyz instead of clm
as the land component.

• Review the Macros files in scripts/ccsm_utils/Machines to provide any compiler
modifications specifically for the new component. This might be a step that is done
after further testing.

• Add support for output files for the new component in the
scripts/ccsm_utils/Tools/st_archive.sh script. This might be done after the new
component is in "production".

• For the new component to run under the CESM driver, a new top level
*_comp_mct.F90 file needs to be added to the component. For instance, a
lnd_comp_mct.F90 file should exist in the cxyz model source code. This file will
provide the init, run, and final interfaces that the CESM driver require. To
generate one of these for the new component, copy an existing one from another
component and modify it to run with the new component. There are several
inherent requirements that make this work such as
• the driver provides the mpi communicator for the component at initialization.

The component must save and use this mpi communicator internally.
• The top level "program" file for the new component should be disabled.
• the component must set various parameters at initialization such as the present

and prognostic flags, and the nx and ny size values.
• the component must pass the grid and decomposition to the driver at initializa-

tion in the particular format required.
• the component must unpack and pack data from the coupling datatype at initial-

ization and during runtime. the fields used must be set in the seq_flds_mod.F90
module in the driver.

• the component must stay synchronized in time with the provided driver time
and should abort if time coordination is incorrect. the component must advance
the correct amount of time whenever the run method is called. the time is pro-
vided to the component by the driver.

How are cice and pop decompositions set and how do I override
them?

The pop and cice models both have similar decompositions and strategies for speci-
fying the decomposition. Both models support decomposition of the horizontal grid

94



Chapter 11. Frequently Asked Questions (FAQ)

into two-dimensional blocks, and these blocks are then allocated to individual pro-
cessors inside each component. The decomposition must be specified when the mod-
els are built. There are four environment variables in env_build.xml for each model
that specify the decomposition used. These variables are POP or CICE followed by
_BLCKX, _BLCKY, _MXBLCKS, and _DECOMP. BLCKX and BLCKY specify the size
of the local block in grid cells in the "x" and "y" direction. MXBLCKS specifies the
maximum number of blocks that might be on any given processor, and DECOMP
specifies the strategy for laying out the blocks on processors.

The values for these environment variables are set automatically by scripts in the cice
and pop "bld" directories when "configure -case" is run. The scripts that generate the
decompositions are

models/ocn/pop2/bld/generate_pop_decomp.pl
models/ice/cice/bld/generate_cice_decomp.pl

Those tools leverage decompositions stored in xml files,

models/ocn/pop2/bld/pop_decomp.xml
models/ice/cice/bld/cice_decomp.xml

to set the decomposition for a given resolution and total processor count. The de-
composition used can have a significant effect on the model performance, and the
decompositions specified by the tools above generally provide optimum or near op-
timum values for the given resolution and processor count. More information about
cice and pop decompositions can be found in each of those user guides.

The decompositions can be specified manually by setting the environment variable
POP_AUTO_DECOMP or CICE_AUTO_DECOMP to false in env_mach_pes.xml
(which turns off use of the scripts above) and then setting the four BLCKX, BLCKY,
MXBLCKS, and DECOMP environment variables in env_build.xml.

In general, relatively square and evenly divided Cartesian decompositions work well
for pop at low to moderate resolution. Cice performs best with "tall and narrow"
blocks because of the load imbalance for most global grids between the low and high
latitudes. At high resolutions, more than one block per processor can result in land
block elimination and non-Cartesian decompositions sometimes perform better. Test-
ing of several decompositions is always recommended for performance and valida-
tion before a long run is started.

How do I change history file output frequency and content for
CAM and CLM during a run?

If you want to change the frequency of output for CAM or CLM (i.e. generate output
every 6 model hours instead of once a model day) in the middle of a run, or if you
want to change the fields that are output, in the middle of a run, you need to stop
the run, rebuild and rerun it with the same casename and branch from the same
casename. See the steps below for doing a branch run while retaining the casename.

Rebuilding the case and restarting it where you left off, are necessary because CAM
and CLM only read namelist variables once, at the beginning of a run. This is not the
case for POP and CICE, they read the namelist input on every restart, and therefore
for POP and CICE, you can change output fields and frequency by modifying the
appropriate namelist variables and then doing a restart.

The following example shows case B40.20th.1deg which runs from 1850 to 2005, and
will generate high frequency output for years 1950 through 2005. CAM will output
data every six hours instead of once a day. Also starting at year 1950 additional fields
will be output by the model.

95



Chapter 11. Frequently Asked Questions (FAQ)

1. The first step is to create case b40.20th.1deg and run the case for years 1850
through 1949 with your initial settings for output.

2. Next move your entire case directory, $CASEDIR, somewhere else, because
you need to rebuild and rerun the case using the same name.
> cd $CASEDIR
> mv b40.20th.1deg b40.20th.1deg.1850-1949

3. Now move your run directory, $RUNDIR, somewhere else as well.
> cd $RUNDIR
> mv b40.20th.1deg b40.20th.1deg.1850-1949

4. Next create a new case in your case directory with the same name,
b40.20th.1deg.
> cd $CASEDIR/scripts
> create_newcase -mach yellowstone -compset B_1850-2000_CN -res f09_g16 -case b40.20th.1deg
cd $RUNDIR

5. Next edit the namelist file, env_conf.xml, in the run directory, $RUNDIR, as
follows:
> cd $RUNDIR
> xmlchange -file env_conf.xml -id RUN_TYPE -val ’branch’
> xmlchange -file env_conf.xml -id RUN_REFCASE -val ’b40.20th.1deg’
> xmlchange -file env_conf.xml -id RUN_REFDATE -val ’1948-01-01’
> xmlchange -file env_conf.xml -id CAM_NML_USE_CASE -val ’1850-2005_cam4’
> xmlchange -file env_conf.xml -id BRNCH_RETAIN_CASENAME -val ’TRUE’
> xmlchange -file env_conf.xml -id GET_REFCASE -val ’FALSE’

6. Next configure the case and edit the coupler and CAM namelists.

a. Configure case.
> configure -case

b. Edit Buildconf/cpl.buildnml.csh. Replace existing
brnch_retain_casename line with the following line
brnch_retain_casename = .true.

Edit Buildconf/cam.buildnml.csh. Check that bndtvghg =
’$DIN_LOC_ROOT’ and add:
&cam_inparm

doisccp = .true.
isccpdata = ’/fis/cgd/cseg/csm/inputdata/atm/cam/rad/isccp.tautab_invtau.nc’
mfilt = 1,365,30,120,240
nhtfrq = 0,-24,-24,-6,-3
fincl2 = ’TREFHTMN’,’TREFHTMX’,’TREFHT’,’PRECC’,’PRECL’,’PSL’
fincl3 = ’CLDICE’,’CLDLIQ’,’CLDTOT’,’CLOUD’,’CMFMC’,’CMFMCDZM’,’FISCCP1’,

’FLDS’,’FLDSC’,’FLNS’,’FLUT’,’FLUTC’,’FSDS’,’FSDSC’,’FSNS’,
’FSNSC’,’FSNTOA’,’FSNTOAC’,’LHFLX’,’OMEGA’,’OMEGA500’,
’PRECSC’,’PRECSL’,’PS’,’Q’,’QREFHT’,’RELHUM’,’RHREFHT’,’SHFLX’,
’SOLIN’,’T’,’TGCLDIWP’,’TGCLDLWP’,’U’,’V’,’Z3’

fincl4 = ’PS:I’,’PSL:I’,’Q:I’,’T:I’,’U:I’,’V:I’,’Z3:I’
fincl5 = ’CLDTOT’,’FLDS’,’FLDSC’,’FLNS’,’FLNSC’,’FSDS’,’FSDSC’,’FSNS’,

’LHFLX’,’PRECC’,’PRECL’,’PRECSC’,’PRECSL’,’SHFLX’,
’PS:I’,’QREFHT:I’,’TREFHT:I’,’TS:I’
/

7. Now build and run the case.
> b40.20th.1deg.$MACH.build
> bsub < b40.20th.1deg.$MACH.run

96



Chapter 11. Frequently Asked Questions (FAQ)

Notes
1. http://code.google.com/p/parallelio

2. ../../cpl7/

97



Chapter 11. Frequently Asked Questions (FAQ)

98



Appendix A. Supported Component Sets

The following lists the supported component sets. Note that all the component sets
currently use the stub GLC component, sglc. Run "create_newcase -list" from the
scripts directory to view the list for the current version of CESM1.

For an overview of CESM components and component sets see overview of cesm
components.

Table A-1. Component Sets

Compset (Shortname) Details

A_PRESENT_DAY (A) Components: datm,dlnd,dice,docn,sglc

Description: All data model

B_2000 (B) Components: cam,clm,cice,pop2,sglc

Description: All active components,
present day

B_2000_CN (BCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
present day, with CN (Carbon Nitrogen)
in clm

B_1850_CAM5 (B1850C5) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, cam5 physics

B_1850_CAM5_CN (B1850C5CN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, cam5 physics, with CN
(Carbon Nitrogen) in CLM

B_1850 (B1850) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial

B_1850_CN (B1850CN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, with CN (Carbon
Nitrogen) in CLM

B_1850_CN_GLC (BG1850CN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, pre-industrial, with CN
(Carbon Nitrogen) in CLM

B_2000_CN_CHEM (B2000CNCHM) Components: cam,clm,cice,pop2,sglc

99



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: All active components,
pre-industrial, with CN (Carbon
Nitrogen) in CLM and super_fast_llnl
chem in atm

B_1850_CN_CHEM (B1850CNCHM) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, with CN (Carbon
Nitrogen) in CLM and super_fast_llnl
chem in atm

B_1850_RAMPCO2_CN (B1850RMCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industirial with co2 ramp, with CN
(Carbon Nitrogen) in CLM

B_1850-2000 (B20TR) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient

B_1850-2000_CN (B20TRCN) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, with CN (Carbon
Nitrogen) in CLM

B_1850-2000_CN_GLC (BG20TRCN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, 1850 to 2000 transient,
with CN (Carbon Nitrogen) in CLM

B_1850-2000_CN_CHEM
(B20TRCNCHM)

Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, with CN (Carbon
Nitrogen) in CLM and super_fast_llnl
chem in atm

B_1850-2000_CAM5 (B20TRC5) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, cam5 physics

B_1850-2000_CAM5_CN (B20TRC5CN) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, cam5 physics, with CN
(Carbon Nitrogen) in CLM

B_2000_CN_GLC (BGCN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, with CN (Carbon
Nitrogen) in CLM

100



Appendix A. Supported Component Sets

Compset (Shortname) Details
B_2000_TROP_MOZART (BMOZ) Components: cam,clm,cice,pop2,sglc

Description: All active components,
with trop_mozart

F_2000_TROP_MOZART (FMOZ) Components: cam,clm,cice,docn,sglc

Description: CAM-Chem with cam4
physics, trop_mozart chemistry, and
present day, prescribed ocn/ice with CN
in CLM

B_2000_WACCM_CN (BWCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
present day, with CN (Carbon Nitrogen)
in clm

B_1850_WACCM (B1850W) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, with waccm

B_1850_WACCM_CN (B1850WCN) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, WACCM with CN
(Carbon Nitrogen) in CLM

B_1850_WACCM_SC_CN
(B1850WSCCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, WACCM with specified
chemistry, CLM with CN (CESM1.0.6
and above)

B_1850-2005_WACCM_CN
(B20TRWCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, WACCM with CN
(Carbon Nitrogen) in CLM

B_1955-2005_WACCM_CN
(B55TRWCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components, 1955
to 2005 transient, WACCM with daily
solar data and SPEs, CLM with CN

B_1955-2005_WACCM_SC_CN
(B55TRWSCCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components, 1955
to 2005 transient, WACCM with
specified chemistry and daily solar data,
CLM with CN (CESM1.0.6 and above)

B_RCP4.5_BGC-BDRD (BRCP45BDRD) Components: cam,clm,cice,pop2,sglc

101



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: All active components,
RCP4.5 future scenario, CN in CLM,
ECO in POP, BGC CO2=diag, rad
CO2=diag (CESM1.0.6 and above)

B_RCP8.5_BGC-BDRD (BRCP85BDRD) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP8.5 future scenario, CN in CLM,
ECO in POP, BGC CO2=diag, rad
CO2=diag (CESM1.0.6 and above)

B_RCP8.5_BGC-BPRP (BRCP85BPRP) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP8.5 future scenario, CN in CLM,
ECO in POP, BGC CO2=prog, rad
CO2=prog (CESM1.0.6 and above)

B_RCP2.6_WACCM_CN (BRCP26WCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP2.6 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP2.6_WACCM_SC_CN
(BRCP26WSCCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP2.6 future scenario, WACCM with
specified chemistry, CLM with CN
(CESM1.0.6 and above)

B_RCP4.5_WACCM_CN (BRCP45WCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP4.5 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP4.5_WACCM_SC_CN
(BRCP45WSCCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP4.5 future scenario, WACCM with
specified chemistry, CLM with CN
(CESM1.0.6 and above)

B_RCP8.5_WACCM_CN (BRCP85WCN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP8.5 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP8.5_WACCM_SC_CN
(BRCP85WSCCN)

Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP8.5 future scenario, WACCM with
specified chemistry, CLM with CN
(CESM1.0.6 and above)

B_RCP8.5_CN (BRCP85CN) Components: cam,clm,cice,pop2,sglc

102



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: All active components,
RCP8.5 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP8.5_CN_GLC (BGRCP85CN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, RCP8.5 future scenario,
with CN (Carbon Nitrogen) in CLM

B_RCP6.0_CN (BRCP60CN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP6.0 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP6.0_CN_GLC (BGRCP60CN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, RCP6.0 future scenario,
with CN (Carbon Nitrogen) in CLM

B_RCP4.5_CN (BRCP45CN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP4.5 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP4.5_CN_GLC (BGRCP45CN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, RCP4.5 future scenario,
with CN (Carbon Nitrogen) in CLM

B_RCP2.6_CN (BRCP26CN) Components: cam,clm,cice,pop2,sglc

Description: All active components,
RCP2.6 future scenario, with CN
(Carbon Nitrogen) in CLM

B_RCP2.6_CN_GLC (BGRCP26CN) Components: cam,clm,cice,pop2,cism

Description: All active components,
with active glc, RCP2.6 future scenario,
with CN (Carbon Nitrogen) in CLM

B_1850_BGC-BPRP (B1850BPRP) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, CN in CLM, ECO in POP,
BGC CO2=prog, rad CO2=prog

B_1850_BGC-BDRD (B1850BDRD) Components: cam,clm,cice,pop2,sglc

Description: All active components,
pre-industrial, CN in CLM, ECO in POP,
BGC CO2=diag, rad CO2=diag

B_1850-2000_BGC-BPRP (B20TRBPRP) Components: cam,clm,cice,pop2,sglc

103



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: All active components, 1850
to 2000 transient, CN in CLM, ECO in
POP, BGC CO2=prog, rad CO2=prog

B_1850-2000_BGC-BDRD (B20TRBDRD) Components: cam,clm,cice,pop2,sglc

Description: All active components, 1850
to 2000 transient, CN in CLM, ECO in
POP, BGC CO2=diag, rad CO2=diag

C_NORMAL_YEAR_ECOSYS (CECO) Components: datm,dlnd,dice,pop2,sglc

Description: Active ocean model with
ecosys and with COREv2 normal year
forcing

C_NORMAL_YEAR (C) Components: datm,dlnd,dice,pop2,sglc

Description: Active ocean model with
COREv2 normal year forcing

C_INTERANNUAL (CIAF) Components: datm,dlnd,dice,pop2,sglc

Description: active ocean model with
COREv2 interannual forcing

D_NORMAL_YEAR (D) Components: datm,slnd,cice,docn,sglc

Description: Active ice model with
COREv2 normal year forcing

D_INTERANNUAL (DIAF) Components: datm,slnd,cice,docn,sglc

Description: active ice model with
COREv2 interannual forcing

E_2000 (E) Components: cam,clm,cice,docn,sglc

Description: Fully active cam and ice
with som ocean, present day

E_2000_CN_GLC (EGCN) Components: cam,clm,cice,docn,cism

Description: Fully active cam and ice
with som ocean and cism land-ice,
present day, with CN

E_1850_CN (E1850CN) Components: cam,clm,cice,docn,sglc

Description: Pre-industrial fully active
ice and som ocean, with CN

E_1850_CN_GLC (EG1850CN) Components: cam,clm,cice,docn,cism

Description: Pre-industrial fully active
ice and som ocean and cism land-ice,
with CN

E_1850_CAM5 (E1850C5) Components: cam,clm,cice,docn,sglc

104



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Pre-industrial fully active
ice and som ocean, cam5 physics

E_1850_CAM5_CN (E1850C5CN) Components: cam,clm,cice,docn,sglc

Description: Pre-industrial fully active
ice and som ocean, cam5 physics with
CN

F_AMIP_CN (FAMIPCN) Components: cam,clm,cice,docn,sglc

Description: AMIP run for CMIP5
protocol - valid only for 1 degree
cam/clm/pres-cice

F_AMIP_CAM5 (FAMIPC5) Components: cam,clm,cice,docn,sglc

Description: AMIP run for CMIP5
protocol with cam5

F_AMIP_CAM5_CN (FAMIPC5CN) Components: cam,clm,cice,docn,sglc

Description: AMIP run for CMIP5
protocol - valid only for 1 degree
cam/clm/pres-cice

F_1850 (F1850) Components: cam,clm,cice,docn,sglc

Description: Pre-industrial cam/clm
with prescribed ice/ocn

F_1850_CN_GLC (FG1850CN) Components: cam,clm,cice,docn,cism

Description: Pre-industrial cam/clm and
cism, with prescribed ice/ocn

F_1850_CAM5 (F1850C5) Components: cam,clm,cice,docn,sglc

Description: Pre-industrial cam/clm
with prescribed ice/ocn, cam5 physics

F_2000 (F) Components: cam,clm,cice,docn,sglc

Description: Stand-alone cam default,
prescribed ocn/ice

F_2000_CAM5 (FC5) Components: cam,clm,cice,docn,sglc

Description: Stand-alone cam default,
prescribed ocn/ice, cam5 physics

F_2000_CN (FCN) Components: cam,clm,cice,docn,sglc

Description: Stand-alone cam default,
prescribed ocn/ice with CN

F_2000_CN_GLC (FGCN) Components: cam,clm,cice,docn,cism

105



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Stand-alone cam default,
prescribed ocn/ice, cism (glacier model),
with CN

F_1850-2000_CN (F20TRCN) Components: cam,clm,cice,docn,sglc

Description: 20th Century transient
stand-alone cam default, prescribed
ocn/ice, with CN

F_1850-2000_CN_GLC (FG20TRCN) Components: cam,clm,cice,docn,cism

Description: 20th Century transient
stand-alone cam default, prescribed
ocn/ice, cism land-ice, with CN

F_1850_CN_CHEM (F1850CNCHM) Components: cam,clm,cice,docn,sglc

Description: stand-alone cam/clm,
pre-industrial, with CN in CLM,
super_fast_llnl chem in cam

F_1850_CN_MAM3 (F1850CNMAM3) Components: cam,clm,cice,docn,sglc

Description: stand-alone cam/clm,
pre-industrial, with CN in CLM, mam3
chem in cam

F_1850_WACCM (F1850W) Components: cam,clm,cice,docn,sglc

Description: Pre-industrial cam/clm
with prescribed ice/ocn

F_2000_WACCM (FW) Components: cam,clm,cice,docn,sglc

Description: present-day cam/clm with
prescribed ice/ocn

F_2000_WACCMX (FWX) Components: cam,clm,cice,docn,sglc

Description: WACCM-X present-day
cam/clm with prescribed ice/ocn

F_1955-2005_WACCM_CN (F55WCN) Components: cam,clm,cice,docn,sglc

Description: 1955-2005 transient,
WACCM with daily solar data and SPEs,
prescribed ocn/ice, CLM with CN

F_2000_WACCM_SC (FWSC) Components: cam,clm,cice,docn,sglc

Description: WACCM with specified
chemistry, prescribed ice/ocn

F_SD_WACCM (FSDW) Components: cam,clm,cice,docn,sglc

Description: WACCM driven by GEOS5
meteorology with radiation feadbacks
turned off

106



Appendix A. Supported Component Sets

Compset (Shortname) Details
F_SD_CAMCHEM (FSDCHM) Components: cam,clm,cice,docn,sglc

Description: CAM-Chem driven by
GEOS5 meteorology with radiation
feadbacks turned off

F_SD_BAM (FSDBAM) Components: cam,clm,cice,docn,sglc

Description: Bulk aerosols driven by
GEOS5 meteorology with radiation
feadbacks turned off

F_TROP_STRAT_CHEM (FTSC) Components: cam,clm,cice,docn,sglc

Description: CAM-Chem with cam4
physics, troposheric/stratospheric
interactive chemistry, and present day,
prescribed ocn/ice with CN in CLM

G_1850_ECOSYS (G1850ECO) Components: datm,dlnd,cice,pop2,sglc

Description: 1850 control for
pop-ecosystem/cice/datm7/dlnd-rx1

G_NORMAL_YEAR (G) Components: datm,dlnd,cice,pop2,sglc

Description: Coupled ocean ice with
COREv2 normal year forcing

G_INTERANNUAL (GIAF) Components: datm,dlnd,cice,pop2,sglc

Description: Coupled ocean ice with
COREv2 interannual forcing

H_PRESENT_DAY (H) Components: datm,slnd,cice,pop2,sglc

Description: Coupled ocean ice slnd

I_TEST_2003 (ITEST) Components: datm,clm,sice,socn,sglc

Description: Test active land model with
QIAN atm input data for just 2002-2003
and Satellite phenology (SP), CO2 level
and Aerosol deposition for 2000
(BECAUSE OF THE SHORT FORCING
PERIOD -- DO NOT USE FOR LONG
SIMULATIONS)

I_2000 (I) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1972-2004 and
Satellite phenology (SP), CO2 level and
Aerosol deposition for 2000

I_1850 (I1850) Components: datm,clm,sice,socn,sglc

107



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Active land model with
QIAN atm input data for 1948 to 1972
and Satellite phenology (SP), CO2 level
and Aerosol deposition for 1850

I_1850_GLC (IG1850) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model with QIAN atm input data for
1948 to 1972 and Satellite phenology
(SP), CO2 level and Aerosol deposition
for 1850

I_2000_GLC (IG) Components: datm,clm,sice,socn,cism

Description: Active glacier model and
active land model with QIAN atm input
data for 1972-2004 and Satellite
phenology (SP), CO2 level and Aerosol
deposition for 2000

I_1948-2004 (I4804) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1948 to 2004
and Satellite phenology (SP), CO2 level
and Aerosol deposition for 2000

I_1850-2000 (I20TR) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1948 to 1972
and transient Satellite phenology (SP),
and Aerosol deposition from 1850 to
2000 and 2000 CO2 level

I_1850-2000_GLC (IG20TR) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model with QIAN atm input data for
1948 to 1972 and transient Satellite
phenology (SP), and Aerosol deposition
from 1850 to 2000 and 2000 CO2 level

I_TEST_2003_CN (ICNTEST) Components: datm,clm,sice,socn,sglc

Description: Test active land model with
QIAN atm input data for just 2002-2003
and CN (Carbon-Nitrogen), CO2 level
and Aerosol deposition for 2000
(BECAUSE OF THE SHORT FORCING
PERIOD -- DO NOT USE FOR LONG
SIMULATIONS)

I_2000_CN (ICN) Components: datm,clm,sice,socn,sglc

108



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Active land model with
QIAN atm input data for 1972-2004 and
CN (Carbon Nitrogen) biogeochemistry,
CO2 level and Aerosol deposition for
2000

I_2000_CN_GLC (IGCN) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model with QIAN atm input data for
1972-2004 and CN (Carbon Nitrogen)
biogeochemistry, CO2 level and Aerosol
deposition for 2000

I_1850_CN (I1850CN) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1948 to 1972
and CN (Carbon Nitrogen)
biogeochemistry, CO2 level and Aerosol
deposition for 1850

I_1850_CN_GLC (IG1850CN) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model with QIAN atm input data for
1948 to 1972 and CN (Carbon Nitrogen)
biogeochemistry, CO2 level and Aerosol
deposition for 1850

I_1850_SPINUP_3HrWx_CN
(I1850SPINUPCN)

Components: datm,clm,sice,socn,sglc

Description: Active land model with
BCN CPLHIST 3-hourly weather forcing
data and half-hourly solar for 1850
spinup of CN (Carbon Nitrogen)
biogeochemistry, CO2 level and Aerosol
deposition for 1850

I_1948-2004_CN (I4804CN) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1948 to 2004
and CN (Carbon Nitrogen)
biogeochemistry, CO2 level and Aerosol
deposition for 2000

I_1850-2000_CN (I20TRCN) Components: datm,clm,sice,socn,sglc

Description: Active land model with
QIAN atm input data for 1948 to 1972
and transient CN, Aerosol dep from
1850 to 2000 and 2000 CO2 level

I_1850-2000_CN_GLC (IG20TRCN) Components: datm,clm,sice,socn,cism

109



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Active land and glacier
model with QIAN atm input data for
1948 to 1972 and transient CN, Aerosol
dep from 1850 to 2000 and 2000 CO2
level

I_RCP8.5_CN (IRCP85CN) Components: datm,clm,sice,socn,sglc

Description: Active land model, RCP8.5
future scenario, with CN in CLM, QIAN
atm input data for 1972 to 2004, 2000
CO2 level

I_RCP8.5_CN_GLC (IGRCP85CN) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model, RCP8.5 future scenario, with CN
in CLM, QIAN atm input data for 1972
to 2004, 2000 CO2 level

I_RCP6.0_CN (IRCP60CN) Components: datm,clm,sice,socn,sglc

Description: Active land model, RCP6.0
future scenario, with CN in CLM, QIAN
atm input data for 1972 to 2004, 2000
CO2 level

I_RCP6.0_CN_GLC (IGRCP60CN) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model, RCP6.0 future scenario, with CN
in CLM, QIAN atm input data for 1972
to 2004, 2000 CO2 level

I_RCP4.5_CN (IRCP45CN) Components: datm,clm,sice,socn,sglc

Description: Active land model, RCP4.5
future scenario, with CN in CLM, QIAN
atm input data for 1972 to 2004, 2000
CO2 level

I_RCP4.5_CN_GLC (IGRCP45CN) Components: datm,clm,sice,socn,cism

Description: Active land and glacier
model, RCP4.5 future scenario, with CN
in CLM, QIAN atm input data for 1972
to 2004, 2000 CO2 level

I_RCP2.6_CN (IRCP26CN) Components: datm,clm,sice,socn,sglc

Description: Active land model, RCP2.6
future scenario, with CN in CLM, QIAN
atm input data for 1972 to 2004, 2000
CO2 level

I_RCP2.6_CN_GLC (IGRCP26CN) Components: datm,clm,sice,socn,cism

110



Appendix A. Supported Component Sets

Compset (Shortname) Details
Description: Active land and glacier
model, RCP2.6 future scenario, with CN
in CLM, QIAN atm input data for 1972
to 2004, 2000 CO2 level

S_PRESENT_DAY (S) Components: xatm,slnd,sice,socn,sglc

Description: All stub models plus xatm

T_PRESENT_DAY_GLC (TG) Components: satm,dlnd,sice,socn,cism

Description: All stub models plus data
land and cism (active ice sheet model)

X_PRESENT_DAY (X) Components: xatm,xlnd,xice,xocn,xglc

Description: All dead model

111



Appendix A. Supported Component Sets

112



Appendix B. Supported Grids

The following table lists all the supported grids. Run "create_newcase -list" from the
scripts directory to view the list for the current version of CESM1.

Table B-1. supported grids

Grid
(Short-
name)

atm_grid lnd_grid ice_grid ocn_grid atm_grid
type

ocn_grid
type

pt1_pt1
(pt1)

pt1 pt1 pt1 pt1 NA NA

0.23x0.31_0.23x0.31
(f02_f02)

0.23x0.31 0.23x0.31 0.23x0.31 0.23x0.31 finite
volume

finite
volume

0.23x0.31_gx1v6
(f02_g16)

0.23x0.31 0.23x0.31 gx1v6 gx1v6 finite
volume

displaced
pole

0.23x0.31_tx0.1v2
(f02_t12)

0.23x0.31 0.23x0.31 tx0.1v2 tx0.1v2 finite
volume

triple
pole

0.47x0.63_0.47x0.63
(f05_f05)

0.47x0.63 0.47x0.63 0.47x0.63 0.47x0.63 finite
volume

finite
volume

0.47x0.63_gx1v6
(f05_g16)

0.47x0.63 0.47x0.63 gx1v6 gx1v6 finite
volume

displaced
pole

0.47x0.63_tx0.1v2
(f05_t12)

0.47x0.63 0.47x0.63 tx0.1v2 tx0.1v2 finite
volume

triple
pole

0.9x1.25_0.9x1.25
(f09_f09)

0.9x1.25 0.9x1.25 0.9x1.25 0.9x1.25 finite
volume

finite
volume

0.9x1.25_gx1v6
(f09_g16)

0.9x1.25 0.9x1.25 gx1v6 gx1v6 finite
volume

displaced
pole

1.9x2.5_1.9x2.5
(f19_f19)

1.9x2.5 1.9x2.5 1.9x2.5 1.9x2.5 finite
volume

finite
volume

1.9x2.5_gx1v6
(f19_g16)

1.9x2.5 1.9x2.5 gx1v6 gx1v6 finite
volume

displaced
pole

2.5x3.33_2.5x3.33
(f25_f25)

2.5x3.33 2.5x3.33 2.5x3.33 2.5x3.3 finite
volume

finite
volume

4x5_4x5
(f45_f45)

4x5 4x5 4x5 4x5 finite
volume

finite
volume

4x5_gx3v7
(f45_g37)

4x5 4x5 gx3v7 gx3v7 finite
volume

displaced
pole

T62_gx3v7
(T62_g37)

96x192 96x192 gx3v7 gx3v7 spectral displaced
pole

T62_tx0.1v2
(T62_t12)

96x192 96x192 tx0.1v2 tx0.1v2 spectral triple
pole

T62_gx1v6
(T62_g16)

96x192 96x192 gx1v6 gx1v6 spectral displaced
pole

T31_T31
(T31_T31)

48x96 48x96 48x96 48x96 spectral spectral

T31_gx3v7
(T31_g37)

48x96 48x96 gx3v7 gx3v7 spectral displaced
pole

113



Appendix B. Supported Grids

Grid
(Short-
name)

atm_grid lnd_grid ice_grid ocn_grid atm_grid
type

ocn_grid
type

T42_T42
(T42_T42)

64x128 64x128 64x128 64x128 spectral spectral

10x15_10x15
(f10_f10)

10x15 10x15 10x15 10x15 finite
volume

finite
volume

ne30np4_0.9x1.25_gx1v6
(ne30_f09_g16)

ne30np4 0.9x1.25 gx1v6 gx1v6 cubed
sphere

displaced
pole

ne30np4_1.9x2.5_gx1v6
(ne30_f19_g16)

ne30np4 1.9x2.5 gx1v6 gx1v6 cubed
sphere

displaced
pole

ne240np4_0.23x0.31_gx1v6
(ne240_f02_g16)

ne240np4 0.23x0.31 gx1v6 gx1v6 cubed
sphere

displaced
pole

ne240np4_0.23x0.31_tx0.1v2
(ne240_f02_t12)

ne240np4 0.23x0.31 tx0.1v2 tx0.1v2 cubed
sphere

triple
pole

T85_0.9x1.25_gx1v6
(T85_f09_g16)

128x256 0.9x1.25 gx1v6 gx1v6 spectral displaced
pole

T85_0.9x1.25_tx0.1v2
(T85_f09_t12)

128x256 0.9x1.25 tx0.1v2 tx0.1v2 spectral triple
pole

T85_T85
(T85_T85)

128x256 128x256 128x256 128x256 spectral spectral

T341_T341
(T341_T341)

512x1024 512x1024 512x1024 512x1024 spectral spectral

T341_0.23x0.31_tx0.1v2
(T341_f02_t12)

512x1024 0.23x0.31 tx0.1v2 tx0.1v2 spectral triple
pole

ne120np4_0.9x1.25_gx1v6
(ne120_f09_g16)

ne120np4 0.9x1.25 gx1v6 gx1v6 cubed
sphere

displaced
pole

ne120np4_0.23x0.31_tx0.1v2
(ne120_f02_t12)

ne120np4 0.23x0.31 tx0.1v2 tx0.1v2 cubed
sphere

triple
pole

114



Appendix C. Supported Machines

The following table lists all supported and generic machines. Run "create_newcase
-list" from the scripts directory to view the list for the current version of CESM1.

Name Description

brutus_po Brutus Linux Cluster ETH (pgi/9.0-1
with open_mpi/1.4.1), 16 pes/node,
batch system LSF, added by UB

brutus_pm Brutus Linux Cluster ETH (pgi/9.0-1
with mvapich2/1.4rc2), 16 pes/node,
batch system LSF, added by UB

brutus_io Brutus Linux Cluster ETH
(intel/10.1.018 with open_mpi/1.4.1), 16
pes/node, batch system LSF, added by
UB

brutus_im Brutus Linux Cluster ETH
(intel/10.1.018 with mvapich2/1.4rc2),
16 pes/node, batch system LSF, added
by UB

edison NERSC XC30, os is CNL, 24 pes/node,
batch system is PBS

hopper NERSC XE6, os is CNL, 24 pes/node,
batch system is PBS

janus CU Linux Cluster (intel), 2 pes/node,
batch system is PBS

titan ORNL XK6, os is CNL, 16 pes/node,
batch system is PBS

kraken NICS/UT/teragrid XT5, os is CNL, 12
pes/node

pleiades NASA/AMES Linux Cluster, Linux
(ia64), Altix ICE, 3.0 GHz Harpertown
processors, 8 pes/node and 8 GB of
memory, batch system is PBS

pleiades_wes NASA/AMES Linux Cluster, Linux
(ia64), Altix ICE, 2.93 GHz Westmere
processors, 12 pes/node and 24 GB of
memory, batch system is PBS

prototype_atlas LLNL Linux Cluster, Linux (pgi), 8
pes/node, batch system is Moab

prototype_hera LLNL Linux Cluster, Linux (pgi), 16
pes/node, batch system is Moab

prototype_nyblue SUNY IBM BG/L, os is BGL, 8
pes/node, batch system is cobalt

prototype_ranger TACC Linux Cluster, Linux (pgi), 1
pes/node, batch system is SGE

prototype_ubgl LLNL IBM BG/L, os is BGL, 2
pes/node, batch system is Moab

generic_ibm generic ibm power system, os is AIX,
batch system is LoadLeveler,
user-defined

115



Appendix C. Supported Machines

Name Description
generic_xt generic CRAY XT, os is CNL, batch

system is PBS, user-defined

generic_linux_pgi generic linux (pgi), os is Linux, batch
system is PBS, user-defined

generic_linux_lahey generic linux (lahey), os is Linux, batch
system is PBS, user-defined

generic_linux_intel generic linux (intel), os is Linux, batch
system is PBS, user-defined

generic_linux_pathscale generic linux (pathscale), os is Linux,
batch system is PBS, user-defined

generic_darwin_intel generic darwin (intel), os is Darwin
(Macintosh OS X), no batch system,
user-defined

generic_darwin_pgi generic darwin (pgi), os is Darwin
(Macintosh OS X), no batch system,
user-defined

yellowstone NCAR IBM, os is Linux, 16 pes/node,
batch system is LSF

116



Appendix D. env_case.xml variables

The following table lists all the environment variables set in the env_case.xml file.
These variables cannot be modified.

Table D-1. env_case.xml variables

Name Type Default Description [Valid
Values]

ATM_GRID char UNSET atmosphere grid

ATM_NX integer 0 number of
atmosphere cells in
i direction

ATM_NY integer 0 Number of
atmosphere cells in
j direction

BLDROOT char $CCSMROOT/scripts/ccsm_utils/BuildCCSM source
scripts build
directory location

CASE char UNSET case name

CASEBUILD char $CASEROOT/BuildconfBuildconf directory
location

CASEROOT char UNSET full path of case

CASETOOLS char $CASEROOT/Tools Case Tools
directory location

CCSMROOT char UNSET ccsm source root
directory

CCSMUSER char UNSET case user name

CCSM_CCOST integer 0 2**n relative cost of
compset B is 1 (DO
NOT EDIT)

CCSM_COMPSET char UNSET CCSM component
set

CCSM_GCOST integer 0 2**n relative cost of
grid f19_g15 is 1
(DO NOT EDIT)

CCSM_LCOMPSET char UNSET CCSM component
set, longname

CCSM_MCOST integer 0 2**n relative cost of
machine (DO NOT
EDIT)

CCSM_SCOMPSET char UNSET CCSM component
set, shortname

CODEROOT char $CCSMROOT/modelsCCSM source
models directory
location

COMP_ATM char cam Name of
atmospheric
component
[cam,datm,xatm,satm]

117



Appendix D. env_case.xml variables

Name Type Default Description [Valid
Values]

COMP_CPL char cpl Name of coupling
component [cpl]

COMP_GLC char sglc Name of land ice
component
[xglc,sglc,cism]

COMP_ICE char cice Name of sea ice
component
[cice,dice,xice,sice]

COMP_LND char clm Name of land
component
[clm,dlnd,xlnd,slnd]

COMP_OCN char pop2 Name of ocean
component
[pop2,docn,xocn,socn,camdom]

GLC_NX integer 0 number of glc cells
in i direction

GLC_NY integer 0 number of glc cells
in j direction

GRID char UNSET CCSM grid

ICE_GRID char UNSET ice grid (must
equal ocn grid)

ICE_NX integer 0 number of ice cells
in i direction

ICE_NY integer 0 number of ice cells
in j direction

LND_GRID char UNSET land grid

LND_NX integer 0 Number of land
cells in i direction

LND_NY integer 0 number of land
cells in j direction

MACH char UNSET current machine
name

OCN_GRID char UNSET ocn grid

OCN_NX integer 0 number of ocn cells
in i direction

OCN_NY integer 0 number of ocn cells
in j direction

OS char UNSET operating system

PTS_MODE logical FALSE Points mode logical
for single point
[TRUE,FALSE]

SCRIPTSROOT char $CCSMROOT/scriptsCCSM source
scripts directory
location

118



Appendix D. env_case.xml variables

Name Type Default Description [Valid
Values]

SHAREROOT char $CCSMROOT/models/csm_shareCCSM source
models share code
location

UTILROOT char $CCSMROOT/scripts/ccsm_utilsCCSM source
scripts utils
directory location

XMLMODE char normal xml format option,
expert removes
extra comments
from env xml files
[normal,expert]

119



Appendix D. env_case.xml variables

120



Appendix E. env_conf.xml variables

The following table lists all the possible environment variables that can be set in the
env_conf.xml file. Because some of these variables are dependent on the components
selected, only a subset of these will appear in $CASEROOT. Default values, where
appropriate, are given in parentheses.

Table E-1. env_conf.xml variables

Name Type Default Description [Valid
Values]

ATM_NCPL char 24 number of atm
coupling intervals
per day

BRNCH_RETAIN_CASENAMElogical FALSE allow same branch
casename as
reference casename
[TRUE,FALSE]

CAM_CONFIG_OPTSchar CAM configure
options, see CAM
configure utility for
details

CAM_DYCORE char fv CAM dynamical
core
[eul,fv,homme]

CAM_NAMELIST_OPTSchar CAM specific
namelist settings
for -namelist
option

CAM_NML_USE_CASEchar UNSET CAM namelist
use_case

CCSM_BGC char none BGC flag
[none,CO2A,CO2B,CO2C,CO2_DMSA]

CCSM_CO2_PPMV real 379.000 CO2 ppmv

CCSM_VOC char FALSE Only used for
B,E,F,I compsets: if
true will pass VOC
fields from lnd to
atm [TRUE,FALSE]

CICE_CONFIG_OPTSchar CICE configure
options, see CICE
configure utility for
details

CICE_MODE char prognostic cice mode
[prognos-
tic,prescribed,thermo_only]

121



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

CICE_NAMELIST_OPTSchar CICE specific
namelist settings
for -namelist
option

CLM_BLDNML_OPTSchar Options to send to
CLM
build-namelist (see
models/lnd/clm/bld/build-
namelist -h for list
of options)

CLM_CO2_TYPE char constant clm CO2 type,
constant means
value in CLM
namelist,
diagnostic or
prognostic mean
use the value sent
from the
atmosphere model
[con-
stant,diagnostic,prognostic]

CLM_CONFIG_OPTSchar Options to send to
CLM
configure (see mod-
els/lnd/clm/bld/configure
-h for list of
options)

CLM_FORCE_COLDSTARTchar off Value of ’on’ forces
model to spinup
from a cold-start
(arbitrary initial
conditions) [on,off]

CLM_NAMELIST_OPTSchar Namelist settings
to add to the
clm_inparm
namelist Note, use
’ around character
values, as XML
parser can’t handle
quotes inside
strings. (list of
item=value
settings, see mod-
els/lnd/clm/bld/namelist_files/namelist_definition.xml)

CLM_NML_USE_CASEchar UNSET CLM namelist
use_case (for a list
see
models/lnd/clm/bld/build-
namelist -use_case
list)

122



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

CLM_PT1_NAME char UNSET Name of single
point resolution
dataset to be used
in I compset only
(for a list see
models/lnd/clm/bld/build-
namelist -res list)

CLM_USRDAT_NAMEchar UNSET Data identifier
name for CLM
user-created
datasets (see
Quick-
start.userdatasets)

CPL_ALBAV logical false Only used for C,G
compsets: if true,
compute albedos to
work with daily
avg SW down
[true,false]

CPL_EPBAL char off Only used for C,G
compsets: if ocn,
ocn provides EP
balance factor for
precip [off,ocn]

DATM_CLMNCEP_YR_ALIGNinteger -999 year align
(simulation year
corresponding to
starting year) for
CLM_QIAN mode

DATM_CLMNCEP_YR_ENDinteger -999 ending year to loop
atmosphere forcing
data over for
CLM_QIAN mode

DATM_CLMNCEP_YR_STARTinteger -999 starting year to
loop atmosphere
forcing data over
for CLM_QIAN
mode

DATM_CPL_CASE char UNSET the case name to
use for cpl history
forcing data for
CPLHIST3HrWx
mode

DATM_CPL_YR_ALIGNinteger -999 year align
(simulation year
corresponding to
starting year) for
CPLHIST3HrWx
mode

123



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

DATM_CPL_YR_ENDinteger -999 ending year to loop
data over for
CPLHIST3HrWx
mode

DATM_CPL_YR_STARTinteger -999 starting year to
loop data over for
CPLHIST3HrWx
mode

DATM_MODE char CORE2_NYF DATM mode
[CORE2_NYF,CORE2_IAF,CLM_QIAN,CLM1PT,CPLHIST3HrWx]

DATM_PRESAERO char none DATM prescribed
aerosol forcing
[none,clim_1850,clim_2000,trans_1850-
2000,rcp2.6,rcp4.5,rcp6.0,rcp8.5,pt1_pt1]

DICE_MODE char ssmi DICE mode
[ssmi,ssmi_iaf]

DLND_MODE char NULL DLND mode
[CPLHIST,NULL]

DLND_RUNOFF_MODEchar DIATREN_ANN_RX1DLND runoff
mode [CPL-
HIST,DIATREN_ANN_RX1,DIATREN_IAF_RX1,NULL]

DOCN_MODE char prescribed DOCN mode
[prescribed,som]

DOCN_SSTDATA_FILENAMEchar UNSET Sets sst/ice_cov
filename for amip
runs, only used in
F compset

DOCN_SSTDATA_YEAR_ENDinteger -999 Sets year end of
sst/ice_cov for
amip runs, only
used in F compset

DOCN_SSTDATA_YEAR_STARTinteger -999 Sets year start of
sst/ice_cov for
amip runs, only
used in F compset

GET_REFCASE logical FALSE flag for
automatically
prestaging the
refcase restart
dataset
[TRUE,FALSE]

GLC_GRID char gland20 Glacier model grid
[gland20,gland10,gland5]

GLC_NCPL integer 1 number of glc
coupling intervals
per day (integer)

124



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

ICE_NCPL char $ATM_NCPL number of ice
coupling intervals
per day (integer)

LND_NCPL char $ATM_NCPL number of land
coupling intervals
per day (integer)

MAP_A2LF_FILE char UNSET atm to land
mapping file for
fluxes

MAP_A2LS_FILE char UNSET atm to land
mapping file for
states

MAP_A2OF_FILE char UNSET atm to ocn flux
mapping file for
fluxes (currently
first order
conservative)

MAP_A2OS_FILE char UNSET atm to ocn state
mapping file for
states (currently
bilinear)

MAP_L2AF_FILE char UNSET land to atm
mapping file for
fluxes

MAP_L2AS_FILE char UNSET land to atm
mapping file for
states

MAP_O2AF_FILE char UNSET ocn to atm
mapping file for
fluxes (currently
first order
conservative)

MAP_O2AS_FILE char UNSET ocn to atm
mapping file for
states

MAP_R2O_FILE_R05char UNSET runoff (.5 degree)
to ocn mapping file

MAP_R2O_FILE_R19char UNSET runoff (19 basin) to
ocn mapping file

MAP_R2O_FILE_RX1char UNSET runoff (1 degree) to
ocn mapping file

125



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

MPISERIAL_SUPPORTlogical FALSE TRUE implies this
machine supports
the use of the
mpiserial lib. Not
all machines
support the use of
the mpiserial lib.
For those that do
NOT you will have
to make changes
similar to other
machines that do
support it in order
for it to work.
NOTE: DO NOT
SET THIS TO
TRUE WITHOUT
MAKING THE
REQUIRED
CHANGES TO
THE Macros AND
env_machopts
FILES!!!
[TRUE,FALSE]

OCN_CHL_TYPE char diagnostic provenance of
surface Chl for
radiative
penetration
computations
[diagnos-
tic,prognostic]

OCN_CO2_FLUX_OCMIP_BUG_FIXchar TRUE TRUE implies
using fix to pH
scale of carbon
thermodynamic
constants
[TRUE,FALSE]

OCN_CO2_TYPE char constant provenance of
atmospheric CO2
for gas flux
computation [con-
stant,prognostic,diagnostic]

OCN_COUPLING char full surface heat and
freshwater forcing,
partial is consistent
with coupling to a
data atm model
[full,partial]

126



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

OCN_ICE_FORCINGchar active under ice forcing,
inactive is
consistent with
coupling to a data
ice model
[active,inactive]

OCN_NCPL char 1 number of ocn
coupling intervals
per day (integer)

OCN_TRANSIENT char unset specification of
transient forcing
datasets
[unset,1850-2000]

RUN_REFCASE char case.std Reference case for
hybrid or branch
runs

RUN_REFDATE char 0001-01-01 Reference date for
hybrid or branch
runs
(yyyy-mm-dd).
Used to determine
the component
dataset that the
model starts from.
Ignored for startup
runs

RUN_STARTDATE char 0001-01-01 Run start date
(yyyy-mm-dd).
Only used for
startup or hybrid
runs Ignored for
branch runs.

RUN_TYPE char startup Run initialization
type
[startup,hybrid,branch]

127



Appendix E. env_conf.xml variables

Name Type Default Description [Valid
Values]

USE_MPISERIAL logical FALSE TRUE implies code
is built using the
mpiserial library. If
TRUE, the MPISE-
RIAL_SUPPORT
must also be TRUE.
FALSE (default)
implies that code is
built with a real
MPI library. If a job
uses only one MPI
task (e.g.
single-column
CAM and CLM),
the mpiserial lib
may be an
alternative to real
mpi lib
[TRUE,FALSE]

128



Appendix F. env_mach_pes.xml variables

The following table lists all the environment variables set in the env_mach_pes.xml
file. Default values, where appropriate, are given in parentheses.

Table F-1. env_mach_pes.xml variables

Name Type Default Description [Valid
Values]

BATCH_PES integer 0 pes requested at
batch runtime

CCSM_ESTCOST integer 0 2**n relative cost of
case (DO NOT
EDIT)

CCSM_PCOST integer 0 cost relative to 64
pes (DO NOT
EDIT)

CCSM_TCOST integer 0 2**n relative cost of
test where ERS is 1
(DO NOT EDIT)

CICE_AUTO_DECOMPlogical true if false, user must
set the CICE
decomp, otherwise
configure sets it
[true,false]

MAX_TASKS_PER_NODEinteger UNSET maximum number
of mpi tasks per
node

NTASKS_ATM char 0 number of
atmosphere tasks

NTASKS_CPL char 0 number of coupler
mpi tasks

NTASKS_GLC char 0 number of glc mpi
tasks

NTASKS_ICE char 0 number of ice mpi
tasks

NTASKS_LND char 0 number of land
mpi tasks

NTASKS_OCN char 0 number of ocean
mpi tasks

NTHRDS_ATM char 0 number of
atmosphere
threads

NTHRDS_CPL char 0 number of coupler
mpi threads

NTHRDS_GLC char 0 number of glc mpi
threads

NTHRDS_ICE char 0 number of ice mpi
threads

NTHRDS_LND char 0 number of land
mpi threads

129



Appendix F. env_mach_pes.xml variables

Name Type Default Description [Valid
Values]

NTHRDS_OCN char 0 number of ocean
mpi threads

PES_LEVEL char UNSET pes level
determined by
automated
initialization (DO
NOT EDIT)

PES_PER_NODE char $MAX_TASKS_PER_NODEpes per node for
cost scaling

POP_AUTO_DECOMPlogical true if false, user must
set the POP
decomp, otherwise
configure sets it
[true,false]

PSTRID_ATM integer 1 stride of mpi tasks
for atm comp -
currently should
always be set to 1
[1]

PSTRID_CPL integer 1 stride of mpi tasks
for cpl comp -
currently should
always be set to 1
[1]

PSTRID_GLC integer 1 stride of mpi tasks
for glc comp -
currently should
always be set to 1
[1]

PSTRID_ICE integer 1 stride of mpi tasks
for ice comp -
currently should
always be set to 1
[1]

PSTRID_LND integer 1 stride of mpi tasks
for lnd comp -
currently should
always be set to 1
[1]

PSTRID_OCN integer 1 stride of mpi tasks
for ocn comp -
currently should
always be set to 1
[1]

ROOTPE_ATM char 0 root atm mpi task

ROOTPE_CPL char 0 root cpl mpi task

ROOTPE_GLC char 0 root glc mpi task

ROOTPE_ICE char 0 root ice mpi task

ROOTPE_LND char 0 root lnd mpi task

ROOTPE_OCN char 0 root ocn mpi task

130



Appendix F. env_mach_pes.xml variables

Name Type Default Description [Valid
Values]

TOTALPES integer 0 total number of pes
(derived
automatically - DO
NOT EDIT)

131



Appendix F. env_mach_pes.xml variables

132



Appendix G. env_build.xml variables

The following table lists all the environment variables set in the env_build.xml file.
Default values, where appropriate, are given in parentheses.

Table G-1. env_build.xml variables

Name Type Default Description [Valid
Values]

BUILD_COMPLETE logical FALSE If TRUE, models
have been built
successfully. (DO
NOT EDIT)
[TRUE,FALSE]

BUILD_STATUS integer 0 Status of prior
build. (DO NOT
EDIT)

BUILD_THREADEDlogical FALSE TRUE implies
always build
model for openmp
capability If
FALSE, build
model with
openmp capability
only if THREAD is
greater than 1
[TRUE,FALSE]

CICE_BLCKX integer 0 Size of cice block in
first horiz
dimension. Value
set by gener-
ate_cice_decomp.pl
(called by
configure). Only
expert users should
edit this

CICE_BLCKY integer 0 Size of cice block in
second horiz
dimension. Value
set by gener-
ate_cice_decomp.pl
(called by
configure). Only
expert users should
edit this

CICE_DECOMPTYPEchar 0 cice block
distribution type.
Value set by gener-
ate_cice_decomp.pl
(called by
configure). Only
expert users should
edit this

133



Appendix G. env_build.xml variables

Name Type Default Description [Valid
Values]

CICE_MXBLCKS integer 0 Max number of
cice blocks per
processor. Value set
by gener-
ate_cice_decomp.pl
(called by
configure). Only
expert users should
edit this

COMP_INTERFACE char MCT use MCT or ESMF
component
interfaces
[MCT,ESMF]

DEBUG logical FALSE TRUE implies
turning on run and
compile time
debugging
[TRUE,FALSE]

ESMF_LIBDIR char directory of
esmf.mk in
pre-built ESMF
library

EXEROOT char UNSET executable root
directory

GLC_NEC integer 0 GLC land ice
model number of
elevation classes
[0,3,5,10]

GMAKE char gmake Fullname of GNU
make command
(usually gmake)

GMAKE_J integer 1 Number of
processors for
gmake

INCROOT char $EXEROOT/lib/includecase lib include
directory

LIBROOT char $EXEROOT/lib case lib directory

OBJROOT char $EXEROOT case build
directory

OCN_TRACER_MODULESchar iage Optional ocean
tracers. Any
combination of:
iage cfc ecosys

PIO_CONFIG_OPTSchar --disable-mct
--disable-timing

PIO configure
options, see PIO
configure utility for
details

134



Appendix G. env_build.xml variables

Name Type Default Description [Valid
Values]

POP_BLCKX integer 0 Size of pop block in
first horiz
dimension. Value
determined by
gener-
ate_pop_decomp.pl
which is called by
configure. Only
expert users should
edit this

POP_BLCKY integer 0 Size of pop block in
second horiz
dimension. Value
determined by
gener-
ate_pop_decomp.pl
which is called by
configure. Only
expert users should
edit this

POP_DECOMPTYPEchar 0 pop block
distribution type.
Value determined
by gener-
ate_pop_decomp.pl
which is called by
configure

POP_MXBLCKS integer 0 Max number of
pop blocks per
processor. Value
determined by
gener-
ate_pop_decomp.pl
which is called by
configure. Only
expert users should
edit this

RUNDIR char $EXEROOT/run case run directory

SMP_BUILD char 0 smp status of
previous build,
coded string. (DO
NOT EDIT)

SMP_VALUE char 0 smp status of
current setup,
coded string (DO
NOT EDIT)

USE_ESMF_LIB char FALSE TRUE implies
using the ESMF
library specified by
ESMF_LIBDIR or
ESMFMKFILE
[TRUE,FALSE]

135



Appendix G. env_build.xml variables

136



Appendix H. env_run.xml variables

The following table lists all the xml variables set in the env_run.xml file.

Table H-1. env_run.xml variables

Name Type Default Description [Valid
Values]

AOFLUX_GRID char ocn grid for atm ocn
flux calc
[ocn,atm,exch]

ATM_PIO_NUMTASKSinteger -1 atm pio number of
io tasks

ATM_PIO_ROOT integer -99 pio root processor

ATM_PIO_STRIDE integer -99 pio stride

ATM_PIO_TYPENAMEchar nothing pio io type

AVGHIST_DATE integer -999 yyyymmdd format,
sets coupler
time-average
history date (like
REST_DATE)

AVGHIST_N char -999 sets coupler
time-average
history file
frequency (like
REST_N)

AVGHIST_OPTION char never sets coupler
time-average
history file
frequency (like
REST_OPTION)

BATCHQUERY char UNSET command used to
query batch system

BATCHSUBMIT char UNSET command used to
submit to batch
system

BFBFLAG logical FALSE turns on bit-for-bit
reproducibility
with varying pe
counts in the driver
and coupler,
performance will
likely be reduced
[TRUE,FALSE]

BUDGETS logical FALSE logical that turns
on diagnostic
budgets FALSE
means budgets will
never be written
[TRUE,FALSE]

137



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

BUDGET_ANNUALinteger 1 output level for
annual average
budget diagnostics,
written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

BUDGET_DAILY integer 0 output level for
daily average
budget diagnostics,
written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

BUDGET_INST integer 0 output level for
instantaneous
budget diagnostics,
written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

BUDGET_LONGTERM_EOYinteger 1 output level for
longterm average
budget diagnostics
written at end of
year, written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

138



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

BUDGET_LONGTERM_STOPinteger 0 output level for
longterm average
budget diagnostics
written at end of
run, written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

BUDGET_MONTHLYinteger 1 output level for
monthly average
budget diagnostics,
written only if
BUDGETS variable
is TRUE, 0=none,
1=net summary,
2=+detailed
surface,
3=+detailed atm
[0,1,2,3]

CALENDAR char NO_LEAP calendar type
[NO_LEAP,GREGORIAN]

CASESTR char UNSET case description

CCSM_BASELINE char /UNSET standard ccsm
baselines directory
for testing

CCSM_CPRNC char /UNSET standard location
of the cprnc tool

CCSM_REPOTAG char UNSET CCSM tag

CHECK_TIMING logical TRUE logical to diagnose
model timing at the
end of the run
[TRUE,FALSE]

COMP_RUN_BARRIERSlogical FALSE if TRUE, turns on
component run
barrier calls in the
driver
[TRUE,FALSE]

CONTINUE_RUN logical FALSE A continue run
extends an existing
CCSM run exactly.
A setting of TRUE
implies a
continuation run
[TRUE,FALSE]

CPL_PIO_NUMTASKSinteger -1 pio number of io
tasks

CPL_PIO_ROOT integer -99 pio root processor

139



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

CPL_PIO_STRIDE integer -99 pio stride

CPL_PIO_TYPENAMEchar nothing pio io type

DIN_LOC_ROOT char $DIN_LOC_ROOT_CSMDATAlocal inputdata
directory for CCSM
prestaged data

DIN_LOC_ROOT_CLMQIANchar UNSET general ccsm
inputdata directory
for CLM QIAN
datm forcing files

DIN_LOC_ROOT_CSMDATAchar UNSET general ccsm
inputdata directory

DOUT_L_HPSS_ACCNTchar 00000000 account number
charged for long
term archival on
hpss

DOUT_L_HTAR logical FALSE logical to tar up
long term archiver
history files
[TRUE,FALSE]

DOUT_L_MS logical FALSE logical to turn on
long term
archiving (if
DOUT_S is also
TRUE)
[TRUE,FALSE]

DOUT_L_MSROOT char UNSET local long term
archiving root
directory

DOUT_S logical TRUE logical to turn on
short term
archiving
[TRUE,FALSE]

DOUT_S_ROOT char UNSET local short term
archiving root
directory

DOUT_S_SAVE_INT_REST_FILESlogical FALSE logical to archive
all interim restart
files, not just those
at end of run
[TRUE,FALSE]

DRV_THREADING logical FALSE Turns on
component varying
thread control in
the driver
[TRUE,FALSE]

EPS_AAREA real 9.0e-07 error tolerance for
differences in
atm/land areas in
domain checking

140



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

EPS_AGRID real 1.0e-12 error tolerance for
differences in
atm/land lon/lat
in domain checking

EPS_AMASK real 1.0e-13 error tolerance for
differences in
atm/land masks in
domain checking

EPS_FRAC real 1.0e-02 error tolerance for
differences in
fractions in domain
checking

EPS_OAREA real 1.0e-01 error tolerance for
differences in
ocean/ice areas in
domain checking

EPS_OGRID real 1.0e-02 error tolerance for
differences in
ocean/ice lon/lat
in domain checking

EPS_OMASK real 1.0e-06 error tolerance for
differences in
ocean/ice masks in
domain checking

GLC_PIO_NUMTASKSinteger -1 pio number of io
tasks

GLC_PIO_ROOT integer -99 pio root processor

GLC_PIO_STRIDE integer -99 pio stride

GLC_PIO_TYPENAMEchar nothing pio io type

HISTINIT logical FALSE logical to write an
extra initial coupler
history file
[TRUE,FALSE]

HIST_DATE integer -999 yyyymmdd format,
sets coupler
snapshot history
date (like
REST_DATE)

HIST_N char -999 sets coupler
snapshot history
file frequency (like
REST_N)

HIST_OPTION char never sets coupler
snapshot history
file frequency (like
REST_OPTION)

141



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

ICE_PIO_NUMTASKSinteger -1 pio number of io
tasks

ICE_PIO_ROOT integer -99 pio root processor

ICE_PIO_STRIDE integer -99 pio stride

ICE_PIO_TYPENAMEchar nothing pio io type

INFO_DBUG integer 1 level of debug
output,
0=minimum,
1=normal, 2=more,
3=too much
[0,1,2,3]

LND_PIO_NUMTASKSinteger -1 pio number of io
tasks

LND_PIO_ROOT integer -99 pio root processor

LND_PIO_STRIDE integer -99 pio stride

LND_PIO_TYPENAMEchar nothing pio io type

LOGDIR char $CASEROOT/logs directory where log
files should be
copied in addition
to archiving

OCN_PIO_NUMTASKSinteger -1 pio number of io
tasks: uses
pio_numtasks
value if set to -99

OCN_PIO_ROOT integer -99 pio root processor:
uses pio_root value
if set to -99

OCN_PIO_STRIDE integer -99 pio stride: uses
pio_stride value if
set to -99

OCN_PIO_TYPENAMEchar nothing pio io type: uses
pio_typename
value if set to \

OCN_TAVG_HIFREQchar FALSE tavg output control
for high-frequency
output
[TRUE,FALSE]

OCN_TAVG_TRACER_BUDGETchar FALSE tavg output control
for tracer-budget
terms
[TRUE,FALSE]

142



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

OCN_TIGHT_COUPLINGlogical FALSE if TRUE, treats
ocean model like
lnd/ice in coupling
and removes 1
coupling period lag
at the cost of
concurrency
[TRUE,FALSE]

ORBITAL_MODE char fixed_year orbital mode
setting
[fixed_year,variable_year,fixed_parameters]

ORBITAL_YEAR integer 1990 orbital year

ORBITAL_YEAR_ALIGNinteger 1990 model year
associated with
orbital year for
varying orbital
years

PIO_ASYNC_INTERFACElogical FALSE TRUE implies
perform
asynchronous i/o
[TRUE,FALSE]

PIO_DEBUG_LEVELinteger 0 pio debug level
[0,1,2,3,4,5,6]

PIO_NUMTASKS integer -1 pio number of io
tasks

PIO_ROOT integer 1 pio root processor

PIO_STRIDE integer 4 mpi task stride
between io tasks

PIO_TYPENAME char netcdf pio io type: netcdf,
pnetcdf, netcdf4p,
netcdf4c

PTS_LAT real(1) -999.99 Points mode
nearest latitudes

PTS_LON real(1) -999.99 Points mode
nearest longitudes

REST_DATE char $STOP_DATE date in yyyymmdd
format, sets model
restart write date
with
REST_OPTION
and REST_N

REST_N char $STOP_N sets model restart
writes with
REST_OPTION
and REST_DATE
(same options as
STOP_N)

143



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

REST_OPTION char $STOP_OPTION sets frequency of
model restart
writes (same
options as
STOP_OPTION)
with REST_N and
REST_DATE

RESUBMIT integer 0 if RESUBMIT is
greater than 0, then
case will
automatically
resubmit if that
feature is
supported in the
run script

SAVE_TIMING logical FALSE logical to save
timing files in
rundir
[TRUE,FALSE]

SHR_MAP_DOPOLElogical TRUE invoke pole
averaging
corrections in
shr_map_mod
weights generation
[TRUE,FALSE]

START_TOD integer 0 start time-of-day in
universal time
(seconds), should
be between zero
and 86400

STOP_DATE integer -999 date in yyyymmdd
format, sets the run
length with
STOP_OPTION
and STOP_N, can
be in addition to
STOP_OPTION
and STOP_N,
negative value
implies off

STOP_N integer 5 sets the run length
with
STOP_OPTION
and STOP_DATE

144



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

STOP_OPTION char ndays sets the run length
with STOP_N and
STOP_DATE
STOP_OPTION
alarms are:
[none/never],
turns option off
[nstep/s] , stops
every STOP_N
nsteps , relative to
current run start
time [nsecond/s] ,
stops every
STOP_N nseconds,
relative to current
run start time
[nminute/s] , stops
every STOP_N
nminutes, relative
to current run start
time [nhour/s] ,
stops every
STOP_N nhours ,
relative to current
run start time
[nday/s] , stops
every STOP_N
ndays , relative to
current run start
time [nmonth/s] ,
stops every
STOP_N nmonths ,
relative to current
run start time
[nyear/s] , stops
every STOP_N
nyears , relative to
current run start
time [date] , stops
at STOP_DATE
value [ifdays0] ,
stops at STOP_N
calendar day value
and seconds equal
0 [end] , stops at
end
[none,never,nsteps,nstep,nseconds,nsecond,nminutes,nminute,nhours,nhour,ndays,nday,nmonths,nmonth,nyears,nyear,date,ifdays0,end]

TIMER_LEVEL integer 4 timer output depth
[1,2,3,4,5,6,7,8,9,10]

TIMING_BARRIER logical FALSE if TRUE, turns on
the timing barrier
calls in the model
[TRUE,FALSE]

145



Appendix H. env_run.xml variables

Name Type Default Description [Valid
Values]

TPROF_DATE integer -999 yyyymmdd format,
sets timing output
file date (like
REST_DATE)

TPROF_N char -999 sets timing output
file frequency (like
REST_N)

TPROF_OPTION char never sets timing output
file frequency (like
REST_OPTION but
relative to run start
date)

VECT_MAP char npfix invoke vector
mapping option
[none,npfix,cart3d,cart3d_diag,cart3d_uvw,cart3d_uvw_diag]

146



Glossary

Branch

One of the three ways to initialize CESM runs. CESM runs can be started as
startup, hybrid or branch. Branch runs use the BRANCH $RUN_TYPE and the
restart files from a previous run. See setting up a branch run.

case

The name of your job. This can be any string.

$CASE

The case name. But when running create_newcase, it doubles as the case direc-
tory path name where build and run scripts are placed. $CASE is defined when
you execute the create_newcase command;, and set in env_case.xml. Please see
create a new case.

$CASEROOT

$CASEROOT - the full pathname of the root directory for case scripts
(e.g. /user/$CASE). You define $CASEROOT when you execute the
create_newcase, and is set in env_case.xml. $CASEROOT must be unique.

component

component - Each model can be run with one of several components. Examples
of components include CAM, CICE, CLM, and POP. Component names will al-
ways be in all caps.

component set (compset)

Preset configuration settings for a model run. These are defined in supported
component sets.

$CCSMROOT

The full pathname of the root directory of the CESM source code. $CCSMROOT
is defined when you execute the create_newcase command.

$EXEROOT

The case executable directory root. $EXEROOT is defined when you execute the
configure command, and is set in env_build.xml.

hybrid run

A type of run. Hybrid runs use the HYBRID $RUN_TYPE and are initialized as
an initial run, but use restart datasets from a previous CESM case. Please see
setting up a hybrid run.

147



Glossary

$MACH

The supported machine name, and is defined in env_case.xml when you run
the configure command. Please see supported machines for the list of supported
machines.

model

CESM is comprised of five models (atm, ice, glc, lnd, ocn) and the coupler, cpl.
The word model is loosely used to mean any one of the models or the coupler.

model input data

Refers to static input data for the model. CESM input data are provided as part
of the release via an inputdata area or data from a server.

release

A supported version of CESM.

restart

Refers to a set of data files and pointer files that the model generates and uses to
restart a case.

$RUNDIR

The directory where the model is run, output data files are created, and log
files are found when the job fails. This is usually $EXEROOT/run, and is set
in env_build.xml by the configure command.

tag

A version of CESM. Note: A tag may not be supported.

148


	CESM1.0.z User's Guide
	Table of Contents
	Chapter 1. Introduction
	How To Use This Document
	CESM Overview
	CESM Software/Operating System Prerequisites
	CESM Components
	CESM Component Sets
	CESM Grids
	CESM Machines
	CESM Validation

	Downloading CESM
	Downloading the code and scripts starting with CESM1.0.6
	Obtaining new release versions of CESM prior to CESM1.0.6
	Downloading input data

	Quick Start (CESM Workflow)

	Chapter 2. Creating a Case
	How to create a new case
	Modifying an xml file
	Cloning a case (Experts only)

	Chapter 3. Configuring a Case 
	Configure Overview
	Customizing the configuration
	Setting the case PE layout
	Setting the case initialization type

	Setting componentspecific variables
	CAM variables
	CLM variables
	CICE variables
	POP2 variables
	CISM variables
	DATM variables
	DLND variables
	DICE variables
	DOCN variables
	Driver/coupler variables
	Other variables

	Reconfiguring a Case
	Summary of Files in the Case Directory

	Chapter 4. Building a Case
	Input data
	Usercreated input data
	Using the input data server

	Buildtime variables
	Compiler settings
	Usermodified source code
	Building the executable
	Rebuilding the executable

	Chapter 5. Running a case
	Customizing runtime settings
	Setting run control variables
	CESM Input/Output

	Load balancing a case
	Model timing data
	Using model timing data

	The Run
	Setting the time limits
	Submitting the run
	Restarting a run
	Backing up to a previous restart

	Data flow during a model run
	No archiving
	Shortterm archiving
	Longterm archiving


	Testing a case

	Chapter 6. Post Processing CESM Output
	Chapter 7. Porting CESM
	Porting to a new machine
	Porting using a generic machine
	Porting via user defined machine files

	Port Validation

	Chapter 8. CESM Testing
	Testing overview
	createproductiontest
	createtest
	createtestsuite
	Debugging Tests That Fail

	Chapter 9. Use Cases
	The basic example
	Setting up a branch or hybrid run
	Changing PE layout
	Setting CAM output fields
	Setting CAM forcings
	Initializing the ocean model with a spunup initial condition
	Taking a run over from another user
	Use of an Earth System Modeling Framework (ESMF) library and ESMF interfaces

	Chapter 10. Troubleshooting
	Troubleshooting createnewcase
	Troubleshooting configure
	Troubleshooting job submission problems
	Troubleshooting runtime problems

	Chapter 11. Frequently Asked Questions (FAQ)
	What are the directories and files in my case directory?
	What are CESM1 env variables and env xml files?
	How do I modify the value of CESM env variables?
	Why aren't my env variable changes working?
	Why is there file locking and how does it work?
	How do I change processor counts and component layouts on processors?
	What is pio?
	How do I use pnetcdf?
	Is there more information about the coupler/driver implementation?
	How do I create my own compset?
	How do I add a new grid?
	What calendars are supported in CESM?
	How do I add a new component model to CESM?
	How are cice and pop decompositions set and how do I override them?
	How do I change history file output frequency and content for CAM and CLM during a run?

	Appendix A. Supported Component Sets
	Appendix B. Supported Grids
	Appendix C. Supported Machines
	Appendix D. envcase.xml variables
	Appendix E. envconf.xml variables
	Appendix F. envmachpes.xml variables
	Appendix G. envbuild.xml variables
	Appendix H. envrun.xml variables
	Glossary
	Branch
	case
	$CASE
	$CASEROOT
	component
	component set (compset)
	$CCSMROOT
	$EXEROOT
	hybrid run
	$MACH
	model
	model input data
	release
	restart
	$RUNDIR
	tag


