CESM Tutorial

NCAR Climate and Global Dynamics Laboratory

CESM 2.1.1

CESM1.2.x and previous (see earlier tutorials)

NCAR is sponsored by the National Science Foundation

Outline

- The CESM webpage
- Creating & Running a Case
- Getting More Help

CESM Web Page

http://www.cesm.ucar.edu

NCAR | COMMUNITY EARTH SYSTEM MODEL UCAR | CESM ™

ABOUT HELP SEARCH ...

Q

ADMINISTRATION *

WORKING GROUPS ▼

MODELS ▼

EVENTS 7

CESM Homepage

- Experiments Overview
- CESM2 CMIP6
- Pre-CESM2

- Releases Overview
- Acknowledgement of NSF support in CESM
- Supported Releases
- Scientifically Validated

- Support Overview
- DiscussCESM Bulletin Board

- Projects Overview
- EaSM | Earth System Modeling

CESM 2.1.1 Web Page

http://www.cesm.ucar.edu/models/cesm2

NCAR | COMMUNITY EARTH SYSTEM MODEL UCAR | CESM ™

ABOUT HELP SEARCH ...

Q

ADMINISTRATION *

WORKING GROUPS ▼

MODELS ▼

EVENTS 7

CESM Models / CESM Supported Releases / CESM2

CESM2

About CESM2

CESM is a fully-coupled, community, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.

- What's New in CESM2
- CESM Namina Conventions

A Scientific Validation

Scientific validation consists of a multi-decadal model run of the given component set at the target resolution, followed by scientific review of the model output diagnostics.

· CESM2 Scientifically Validated Configurations *

CESM2 QUICKLINKS

Ouick Start Guide

Downloading The Code

Scientifically Validated Configurations

> Prognostic Components

CESM Software Engineering

RELATED INFORMATION

Data Management & Distribution Plan

Development Project Policies & Terms of Use

DiscussCESM Forums Bulletin Board

Publication / Acknowledgment Information

CESM2 Copyright

CESM Support Policy

CESM2 Included Packages Copyright

CESM PROJECT

The CESM project is supported primarily by the National Science Foundation (NSF). Administration of the CESM is maintained by the

Climate and Global Dynamics Laboratory (CGD)

Downloading the code.

http://www.cesm.ucar.edu/models/cesm2/release_download.html

ABOUT

HELP

SEARCH ...

Q

ADMINISTRATION *

WORKING GROUPS *

MODELS *

EVENTS *

/ CESM Models / CESM Supported Releases / CESM2 / Downloading CESM2 Release Code

DOWNLOADING CESM2 RELEASE CODE

- 1. Read these instructions: CESM2 Quickstart Guide
- 2 Download the current release code:

git clone -b release-cesm2.1.1 https://github.com/ESCOMP/cesm.git cd cesm

./manage externals/checkout externals

For downloading previous versions of CESM2, please see Downloading CESM2

- 3. Register for Online Help: DiscussCESM Forums Registration
- 4. Sign-up for E-mail Notifications: CCSM Participants Mailman Registration

CESM2 QUICKLINKS

Quick Start Guide

Downloading The Code

Scientifically Validated Configurations

> Prognostic Components

CESM Software Engineering

RELATED INFORMATION

Data Management & Distribution Plan

Development Project Policies & Terms of Use

DiscussCESM Forums Bulletin Board

Publication / Acknowledgment Information

CESM2 Copyright

CESM Support Policy

CESM2 Included Packages Copyright

CESM PROJECT

The CESM project is supported primarily by the National Science Foundation (NSF). Administration of the CESM is maintained by the

Climate and Global Dynamics Laboratory (CGD)

Overview of Directories (after initial model download)

Coupling Infrastructure for Modeling Earth (CIME)

(new python-based CESM infrastructure)

addresses needs of multiple efforts

Current CESM Coupling – data components permit flexible activation/deactivation of feedbacks

Porting

- On supported machines no porting is necessary
- On new machines porting needs to be done

Porting details are outside the scope of this tutorial

User's Guide

Porting and Validating CESM on a new platform

Work Flow: Super Quick Start

CESM can be run with a set of 4 commands

Set of commands to build and run the model on a supported machine

```
# one time step
mkdir ~/cases
# go into scripts directory into the source code download
cd /glade/p/cesm/tutorial/cesm2.1.1 tutorial/cime/scripts
# (1) create a new case in the directory "cases" in your home directory
./create newcase --case ~/cases/b.day1.0 --res f09_g17 --compset B1850
# go into the case you just created in the last step
cd ~/cases/b.day1.0
# (2) invoke case.setup
./case.setup
# (3) build the executable
gcmd -- ./case.build
                                                             It is that easy
# (4) submit your run to the batch queue
./case.submit
```


Work Flow: Super Quick Start

Set of commands to build and run the model on a supported machine

```
# go into scripts directory into the source code download
cd /glade/p/cesm/tutorial/cesm2.1.1 tutorial/cime/scripts
# (1) create a new case in the directory "cases" in your home directory
./create newcase --case ~/cases/b.day1.0 --res f09 g17 --compset B1850
# go into the case you just created in the last step
cd ~/cases/b.day1.0/
# (2) invoke case.setup
./case.setup
# (3) build the executable
gcmd -- ./case.build
# (4) submit your run to the batch queue
./case.submit
```

(1) Create a new case

In the scripts directory, **create_newcase** is the tool that generates a new case.

create_newcase requires 3 arguments

create_newcase --case ~/cases/b.day1.0 --res f09_g17 --compset B1850

create_newcase requires 3 arguments

create_newcase --case ~/cases/b.day1.0 -res f09_g17 --compset B1850

What is the casename?

case specifies the name and location of the case being created ~/cases/b.day1.0

create_newcase requires 3 arguments

New grid naming convention

Each model resolution can be specified by its alias, short name and long name.

Example of equivalent alias, short name and long name:

- alias: f09_g17 (atm/Ind_ocn/ice)
- short name: f09_g17
- long name =

create_newcase requires 3 arguments

compset specifies the "component set"

Component set specifies component models, forcing scenarios and physics options for those models

New compset naming convention

Each model compset can be specified by its alias, short name and long name. Example of equivalent alias, short name and long name:

About env_*.xml files

- env_*.xml contains variables used by scripts -- some can be changed by the user
 - env_archive.xml: short-term archiving
 - env_batch.xml: contains batch job information like project, wallclock time, etc.
 - env_build.xml: specifies build information
 - env_case.xml: set by create_newcase and cannot be modified
 - env_mach_pes.xml : specifies layout of components
 - env_mach_specific.xml: compiler, other machine information
 - env_run.xml : sets run time information (such as length of run, frequency of restarts, ...)

User interacts with this file most frequently

Here's a snippet of the env_run.xml file

```
<!--"sets the run length in conjunction with STOP_N and STOP_DATE, valid values: none, never, nst
eps, nstep, nseconds, nsecond, nminutes, nminute, nhours, nhour, ndays, nday, nmonths, nmonth, nyears, nyea
r, date, ifdays0, end (char) " -->
<entry id="STOP_OPTION" value="ndays" />
<!--"sets the run length in conjunction with STOP_OPTION and STOP_DATE (integer) " -->
<entry id="STOP_N" value="5" />
```

"id" - variable name

CESM will run for 5 days

"value" - variable value

To modify a variable in an xml file – use ** xmlchange **

./xmlchange STOP N=20

More Information/Getting Help

CESM Bulletin Board: http://bb.cgd.ucar.edu/

CESM Compsets and Grids

1850_CAM60_CLM50%BGC-CROP_ CICE_POP2%ECO_MOSART_ CISM2%NOEVOLVE_WW3_BGC%BDRD

- 1. 1850 fully-coupled (B1850) control with biogeochemistry.
- 2. 20th century fully-coupled (BHIST) with biogeochemistry and evolving ice sheets.
- 3. 1850 fully-coupled (BW1850) control with WACCM atmosphere and no biogeochemistry.
- 4. 1850 standalone CAM (F1850) control without biogeochemistry.

2000_CAM60%WCSC_CLM50%BGC-CROP_ CICE%PRES_DOCN%DOM_MOSART_ CISM2%NOEVOLVE_SWAV

- 1. 1850 fully-coupled (B1850) control with biogeochemistry.
- 2. 20th century fully-coupled (BHIST) with biogeochemistry and evolving ice sheets.
- 3. 2000 standalone CAM (FWsc2000) control with WACCM atmosphere, specified chemistry.
- 4. 1850 standalone CAM (F1850) control without biogeochemistry.

a%0.9x1.25_l%0.9x1.25_oi%gx1v7_ r%r05_g%gland4_w%ww3a_m%gx1v7

- 1. 1.9x2.25_gx1v7 (f19_g17)
- 2. 0.9x1.25_gx1v7 (f09_g17)
- 3. T62_gx3v7 (T62_g37)
- 4. ne120np4_tx0.1v2 (ne120_t12)