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@ Atmosphere intro
@ Multi-scale nature of atmosphere dynamics
@ Resolved and un-resolved scales
@ ‘Define’ dynamical core and parameterizations

© CAM-FV dynamical core (current ‘work horse’ dynamical core)
@ Horizontal and vertical grid
@ Equations of motion
@ The Lin and Rood (1996) advection scheme
@ Finite-volume discretization of the equations of motion
@ The ‘CD’ grid approach
@ Vertical remapping
o Tracers

© Other dynamical core options in CAM
o CAM-EUL, CAM-SLD, (CAM-MPAS)
o CAM-SE: Next default dynamical core in CAM for medium to ultra-high horizontal
resolution applications
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Horizontal computational space

Red lines: regular latitude-longitude grid

Grid-cell size defines the smallest scale that can be resolved

Many important processes taking place sub-grid-scale that must be parameterized

Loosely speaking, the parameterizations compute grid-cell average tendencies due to
sub-grid-scale processes in terms of the (resolved scale) atmospheric state

In modeling jargon parameterizations are also referred to as physics
(what is unphysical about resolved scale dynamics?)
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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Figure indicates schematically the time scales and horizontal

spatial scales of a range of atmospheric phenomena (Figure from
Thuburn 2011).

e O(10*km): large scale circulations (Asian summer monsoon).
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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O(10*km): large scale circulations (Asian summer monsoon).

O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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O(10*km): large scale circulations (Asian summer monsoon).

O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

o O(10%km): cyclones and anticyclones
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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e O(10*km): large scale circulations (Asian summer monsoon).

e O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

o O(10%km): cyclones and anticyclones

o O(10km): the transition zones between relatively warm and cool air masses can collapse in
scale to form fronts with widths of a few tens of km
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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e O(10*km): large scale circulations (Asian summer monsoon).

e O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

o O(103km): cyclones and anticyclones

o O(10km): the transition zones between relatively warm and cool air masses can collapse in
scale to form fronts with widths of a few tens of km

e O(10%km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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e O(10*km): large scale circulations (Asian summer monsoon).

e O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

o O(103km): cyclones and anticyclones

o O(10km): the transition zones between relatively warm and cool air masses can collapse in
scale to form fronts with widths of a few tens of km

e O(10%km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)

) O(lOm — lmm) turbulent eddies in boundary Iayer (lowest few hundred m’s of the atmosphere, where the dynamics
is dominated by turbulent transports); range in scale from few hundred m’s (the boundary layer depth) down to mm
scale at which molecular diffusion becomes significant.
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Multi-scale nature of atmosphere dy
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amics (from Thuburn 2011)

All of the phenomena along the dashed line are
important for weather and climate, and so need to be
represented in numerical models.

Important phenomena occur at all scales - there is no
significant spectral gap! Moreover, there are strong
interactions between the phenomena at different scales,
and these interactions need to be represented.

The lack of any spectral gap makes the modeling of
weather/climate very challenging

The emphasis in this lecture is how we model resolved
dynamics; however, it should be borne in mind that
equally important is how we represent unresolved
processes, and the interactions between resolved and
unresolved processes.

O(10*km): large scale circulations (Asian summer monsoon).

O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

O(103km): cyclones and anticyclones

O(10km): the transition zones between relatively warm and cool air masses can collapse in
scale to form fronts with widths of a few tens of km

O(103km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)

O(lOm — lmm) turbulent eddies in bou ndary Iayer (lowest few hundred m's of the atmosphere, where the dynamics
is dominated by turbulent transports); range in scale from few hundred m’s (the boundary layer depth) down to mm
scale at which molecular diffusion becomes significant.
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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O(10*km): large scale circulations (Asian summer monsoon).

e O(10*km): undulations in the jet stream and pressure patterns associated with the largest

scale Rossby waves (called planetary waves)

O(10%km): cyclones and anticyclones

O(10km): the transition zones between relatively warm and cool air masses can collapse in

scale to form fronts with widths of a few tens of km

e O(10%km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)

o O(10m — 1mm): turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics

is dominated by turbulent transports); range in scale from few hundred m’s (the boundary layer depth) down to mm

scale at which molecular diffusion becomes significant.
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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e O(10*km): large scale circulations (Asian summer monsoon).

e O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)

o O(103km): cyclones and anticyclones

o O(10km): the transition zones between relatively warm and cool air masses can collapse in
scale to form fronts with widths of a few tens of km

e O(10%km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)

) O(lOm — lmm) turbulent eddies in boundary Iayer (lowest few hundred m’s of the atmosphere, where the dynamics
is dominated by turbulent transports); range in scale from few hundred m’s (the boundary layer depth) down to mm
scale at which molecular diffusion becomes significant.
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Multi-scale nature of atmosphere dynamics (wom thubun 2011)
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o O(10*km): large scale circulations (Asian summer monsoon).
e O(10*km): undulations in the jet stream and pressure patterns associated with the largest
scale Rossby waves (called planetary waves)
o O(10%km): cyclones and anticyclones
o O(10km): the transition zones between relatively warm and cool air masses can collapse in

scale to form fronts with widths of a few tens of km

e O(10%km — 100m): convection can be organized on a huge range of different scales (tropical
intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus
clouds formed from turbulent boundary layer eddies)

O(10m — 1mm): turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics
is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm
scale at which molecular diffusion becomes significant.
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Model code

Parameterization suite
@ Moist processes: deep convection, shallow convection, large-scale condensation
@ Radiation and Clouds: cloud microphysics, precipitation processes, radiation

@ Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave
drag

< »

‘Resolved’ dynamics

‘Roughly speaking, the dynamical core solves the governing fluid and thermodynamic equations on
resolved scales, while the parameterizations represent sub-grid-scale processes and other processes
not included in the dynamical core such as radiative transfer.” - Thuburn (2008)
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Model code

Parameterization suite
@ Moist processes: deep convection, shallow convection, large-scale condensation
@ Radiation and Clouds: cloud microphysics, precipitation processes, radiation

@ Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave
drag

Strategies for coupling:
@ process-split: dynamical core & parameterization suite are based
on the same state and their tendencies are added to produce the
updated state (used in CAM-EUL)

@ time-split: dynamic core & parameterization suite are calculated
sequentially, each based on the state produced by the other (used
in CAM-FV; the order matters!).

@ different coupling approaches discussed in the context CCM3 in

Williamson (2002)

@ simulations are very dependent on coupling time-step (e.g.
Williamson and Olson, 2003)

‘Resolved’ dynamics

‘Roughly speaking, the dynamical core solves the governing fluid and thermodynamic equations on
resolved scales, while the parameterizations represent sub-grid-scale processes and other processes
not included in the dynamical core such as radiative transfer.” - Thuburn (2008)
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Spherical (horizontal) discretization grid

CAM-FV uses regular latitude-longitude grid:
@ horizontal position: (X, ), where X longitude and 6 latitude.

@ horizontal resolution specified in configure as:

-res A) X A6

where, e.g., A\ X Af = 1.9 x 2.5 corresponding to nlon=144, nlat=96.

Changing resolution requires a ‘re-compile’ .
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Vertical coordinate

o CAM-FV uses a Lagrangian (‘floating’) vertical coordinate £ so that

d_ o
dt

i.e. vertical surfaces are material surfaces (no flow across them).

Figure shows ‘usual’ hybrid o — p vertical coordinate n(ps, p)
(where ps is surface pressure):

@ 7(ps, p) is a monotonic function of p.
° n(PS: Ps) =1

o 71(ps,0) =0
- —— @ 15(ps;Ptop) = Mtop-

— Boundary conditions are:

o dnps:ps) _

dt
d 'Sy O
e . ° ﬂ(PdtPr p) = W(Ptop) =0

(w is vertical velocity in pressure coordinates)
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Vertical coordinate

o CAM-FV uses a Lagrangian (‘floating’) vertical coordinate £ so that
d
&
dt

i.e. vertical surfaces are material surfaces (no flow across them).

Figure:

@ set £ =1 at time tseare (black lines).

o for t > tstarr the vertical levels deform as they move
with the flow (blue lines).

- @ to avoid excessive deformation of the vertical levels

(non-uniform vertical resolution) the prognostic

T variables defined in the Lagrangian layers £ are

periodically remapped (= conservative interpolation)

e N back to the Eulerian reference coordinates 1 (more on
this later).
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Vertical coordinate

o Vertical resolution specified in configure as:

-nlev klev

where klev is the number of vertical levels, e.g., klev = 26 or klev = 30. Changing vertical resolution

requires a ‘re-compile’.

The vertical extent is from the surface to
@ approximately 40 km’s / 2hPa for CAM

@ approximately 100 km's / 10=% hPa for WACCM
(Whole Atmosphere Community Climate Model)

o approximately 500 km's / 10=% hPa for WACCM-x
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

o spherical geoid: geopotential ® is only a function of radial distance from the center of the
Earth r: ® = ®(r) (for planet Earth the true gravitational acceleration is much stronger than
the centrifugal force).
= Effective gravity acts only in radial direction
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

o spherical geoid: geopotential ® is only a function of radial distance from the center of the
Earth r: ® = ®(r) (for planet Earth the true gravitational acceleration is much stronger than
the centrifugal force).
= Effective gravity acts only in radial direction

o quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
Involves ignoring the acceleration term in the vertical component of the momentum
equations so that it reads:

op
= - 1
rg=—5 (1)

where g gravity, p density and p pressure. Good approximation down to horizontal scales
greater than approximately 10km.
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

o spherical geoid: geopotential ® is only a function of radial distance from the center of the
Earth r: ® = ®(r) (for planet Earth the true gravitational acceleration is much stronger than
the centrifugal force).
= Effective gravity acts only in radial direction

o quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
Involves ignoring the acceleration term in the vertical component of the momentum
equations so that it reads:
op
0z’

where g gravity, p density and p pressure. Good approximation down to horizontal scales

greater than approximately 10km.

pg= (1)

@ shallow atmosphere: a collection of approximations. Coriolis terms involving the horizontal
components of Q are neglected (2 is angular velocity), factors 1/r are replaced with 1/a
where a is the mean radius of the Earth and certain other metric terms are neglected so that
the system retains conservation laws for energy and angular momentum.
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Adiabatic frictionless equations of motion using Lagrangian vertical

coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion integrated over a

layer can be written as

mass air:
mass tracers:
horizontal momentum:

thermodynamic:

o(0p) _
at

9(dpq) _

ot
(olv/8

—Vh - (Vhdp),

—V[-, : (Vh qép) )

= (C+ KXV — Vhe — Vb,

ot
(6p®©)

ot

=~V (V40p9O)

V.

where dp is the layer thickness, v}, is horizontal wind, g tracer mixing ratio, ¢ vorticity, f Coriolis,

K kinetic energy, © potential temperature. The momentum equations are written in vector

invariant form.
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Adiabatic frictionless equations of motion using Lagrangian vertical

coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion integrated over a

layer can be written as

mass air:
mass tracers:
horizontal momentum:

thermodynamic:

o(op) .
=V, (%6
ot vI'l (Vh P)7
a(dpq) .
= _V,- 5
ot V- (Vhqop),
% = —(C+ )k X Vh — Vi — Vb,
8(5p®©) .
= —V; - (¥6p©
ot h (Vh P )

The equations of motion are discretized using an Eulerian finite-volume approach.
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Finite-volume discretization of continuity equation

3p

Integrate the flux-form continuity equation horizontally over a control volume:

%//AapdA:—//AVh(Vhép) dA, )

where A is the horizontal extent of the control volume. Using Gauss's divergence theorem for the

right-hand side of (2) we get:
0 - oo
—//5pdA:—% dpvV-ndA, 3)
ot JJa 9A

where OA is the boundary of A and 7 is outward pointing normal unit vector of JA.
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Finite-volume discretization of continuity equation

3p

Integrate the flux-form continuity equation horizontally over a control volume:

%//AapdA?//Avh(vhép) dA, &)

where A is the horizontal extent of the control volume. Using Gauss's divergence theorem for the

right-hand side of (2) we get:
0 S
—//zipdA:—% Sp V- hdA, 3)
ot JJa oA

Right-hand side of (3) represents the instantaneous flux of mass through the vertical faces of the
control volume.

Next: integrate over one time-step Atg,, and discretize left-hand side.
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Finite-volume discretization of continuity equation

op

Integrate the flux-form continuity equation horizontally over a control volume:

%//AépdA:—//Avh(Vhdp) dA, ©

<—n+1 <=n t=(nt1)At -
AASp T — AAsp = —Atdy,,/ R [ - opv- ndA] dt, 3)
t=nAt

where n is time-level index and (-) is cell-averaged value.

The right-hand side represents the mass transported through all of the four vertical control volume
faces into the cell during one time-step. Graphical illustration on next slide! J
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Finite-volume discretization of continuity equation: Tracking mass

Lagrangian form

[

Eulerian flux form

The yellow areas are ‘swept’ through the control volume faces during one time-step. The grey
area is the corresponding Lagrangian area (area moving with the flow with no flow through its
boundaries that ends up at the Eulerian control volume after one time-step). Black arrows show
parcel trajectories.

Note equivalence between Eulerian flux-form and Lagrangian form!
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Finite-volume discretization of continuity equation: Tracking mass

Lagrangian form

Eulerian flux form

Until now everything has been exact. How do we approximate the fluxes numerically?

o In CAM-FV the Lin and Rood (1996) scheme is used which is a dimensionally split scheme
(that is, rather than ‘explicitly’ estimating the boundaries of the yellow areas and integrate
over them, fluxes are estimated by successive applications of one-dimensional operators in
each coordinate direction).

1/
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Finite-volume discretization of continuity equation: Tracking mass

Lagrangian form

et
P

Eulerian flux form

Until now everything has been exact. How do we approximate the fluxes numerically?

o (before showing equations for Lin and Rood (1996) scheme) What is the effective
Lagrangian area associated with the Lin and Rood (1996) scheme?

1/
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Finite-volume discretization of continuity equation: Tracking mass

] Figure: Red lines define boundary of exact Lagrangian
(d) cell for a special case with deformational, rotational and
' divergent wind field. Blue colors is Lagrangian cell
associated with the Lin and Rood (1996) scheme. Dark
blue shading weights integrated mass with 1 and light
blue shading weights integrated mass with 1/2. See
P Machenhauer et al. (2009) for details.

Until now everything has been exact. How do we approximate the fluxes numerically?

o (before showing equations for Lin and Rood (1996) scheme) What is the effective
Lagrangian area associated with the Lin and Rood (1996) scheme?
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The Lin and Rood (1996) advection scheme

3p" = 35"+ P [3 (57 + £2@80) | + F7 [§ (35" + @)

where

e
>
ES
Il

flux divergence in \ or 6 coordinate direction

= advective update in A or f coordinate direction
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The Lin and Rood (1996) advection scheme

3" ="+ F [ (55" + 030" | + F° [3 (5" + P @)

o Figure: Graphical illustration of flux-divergence operator F*. Shaded areas show cell average
values for the cell we wish to make a forecast for and the two adjacent cells.
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The Lin and Rood (1996) advection scheme

ap" =5p" + P [3 (57 + 280 | + F [3 (57 + P3RN)]

—AtUigm —AtUs—

ug are the time-averaged winds on each face (more on how these are obtained later).
ast / West
e F* is proportional to the difference between mass ‘swept’ through East and West cell face.

fA=FA +ﬁAtdynD, where D is divergence.

On Figure we assume constant sub-grid-cell reconstructions for the fluxes.
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The Lin and Rood (1996) advection scheme

3p" = 35"+ P [3 (57 + £280) | + F7 [4 (35" + 7@RN)]

—DtUig- —AtUL—

Higher-order approximation to the fluxes:

o Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear function using
neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under
linear function = cell average).
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The Lin and Rood (1996) advection scheme

3" ="+ P [1 (5" + (307 | + FO [4 (36" + P @EN)]

—DtUzg —AtUs—

Higher-order approximation to the fluxes:

o Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear function using
neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under
linear function = cell average).

o Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984): Fit

parabola using neighboring grid-cell average values with mass-conservation as a constraint.
Note: Reconstruction is CO across cell edges.
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The Lin and Rood (1996) advection scheme

ap" T =5p" + P [3 (57 + £2@R0) | + F [3 (57 + P2 GRN)]

~AtUiz ——AtUs—

Higher-order approximation to the fluxes:

o Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): fit a linear function using
neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under
linear function = cell average).

o Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984): fit parabola
using neighboring grid-cell average values with mass-conservation as a constraint. Note:
reconstruction is continuous at cell edges.

@ Reconstruction function may ‘overshoot’ or ‘undershoot’ which may lead to unphysical
and/or oscillatory solutions. Use limiters to render reconstruction function shape-preserving.
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The Lin and Rood (1996) advection scheme

3" ="+ P[4 (3" + 230" | + FO [4 (36" + @),

Advantages:

@ Inherently mass conservative (note: conservation does not necessarily imply accuracy!).

@ Formulated in terms of one-dimensional operators.

o Preserves a constant for a non-divergent flow field (if the finite-difference approximation to
divergence is zero).

@ Preserves linear correlations between trace species (if shape-preservation filters are not
applied)

@ Has shape-preserving options.
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Namelist variables for outer operators

I0RD: Scheme used for F», JORD: scheme used for F¢

Options for sub-grid-scale reconstruction (IORD, JORD = -2,1,2,3,4,5,6):

00000606

Piecewise linear (non shape-preserving), (van Leer, 1977).

Piecewise constant (Godunov, 1959).

Piecewise linear with shape-preservation constraint (van Leer, 1977).

Piecewise parabolic with shape-preservation constraint (Colella and Woodward, 1984).
Piecewise parabolic with shape-preservation constraint (Lin and Rood, 1996).
Piecewise parabolic with positive definite constraint (Lin and Rood, 1996).

Piecewise parabolic with quasi ‘shape-preservation’ constraint (Lin and Rood, 1996).

Defaults: TORD=JORD=4

Peter Hjort Lauritzen (NCAR) Atmosphere Modeling I: Introduction & Dynamics July 30, 2012



Namelist variables for outer operators

@ In top layers operators are reduced to first order:
if (k<klev/8) IORD=JORD=1

E.g., for klev=30 the operators are altered in the top 3 layers.

o The advective f*? (inner) operators are ‘hard-coded' to 1st order. For a linear analysis of
the consequences of using inner and outer operators of different orders see Lauritzen (2007).
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

o(p) _
= =V (Vhop),
ot h (Vhdp)
d(dpq) .
= —V4 - (Vhop),
ot h - (Vadp)
oV -
a—": = —(C+ )R X Uy — Vs — V0,
9(0pO) .
— = —Vp (Vhép©
ot h (Va6p®©)
i
The equations of motion are discretized using an Eulerian finite-volume approach. )
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

™t ="+ P E (ép" + fg(&)"))] + F? E (5/3" + f*(&?"))} :

d(dpq) .
= —Vh- (7
ot h (Vh P)7
% = —(C+ F)K X Vh — Vi — V0,

9(3pO) .
QOPE) V- (%6p©

e Vi (Vhop®©)
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

—n+1 _%n A 1 ——n Wl 0 1 —n AN
% =5+ P[5 (5 + @) |+ F |5 (54 @)
mnﬂ = super-cycled (discussed later),
% = —(C+ AKX Ty — Vir — Vpo,
9(6p© =
(Bi ) = =V (V40pO)
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

—n+1 _%=n A 1 —n 0 =N 0 1 —n N =lp
= =5+ P[5 (57 + @) |+ F |5 (54 @) |
mnﬂ = super-cycled (discussed later),
i =i =P+ 0K x ] = Vi (P) - Atg,P,
o(6p© =
o, e

o Ilis operator using combinations of FA and f2¢ as components to approximate the
time-volume-average of the vertical component of absolute vorticity. Similarly for I but for
kinetic energy. Vj, is simply approximated by finite differences. For details see Lin (2004).

o P is a finite-volume discretization of the pressure gradient force (see Lin 1997 for details).
v
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

_ _ iy _ 1/, _
st ="+ P [5 (5p" + f"(ép"))} + F® [5 (5P" + fk(ﬁp"))] :
anrl = super-cycled (discussed later),
gl =T [(g +f)k x vh] -V, (F%) — Dtgy,P,
——n ——n 1 —n = 1 . n <N
o5p"t —®8p"+ F {5 (@6p + f9(@sp ))] + F¢ [5 (@6p + A (©dp ))] ,
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

—n+1 _=n A E —n Q=N 0 1 —n A\ =
5p ="+ F [2(6p +f(6p))}+F {z(ap +f(5p))],
%nﬂ = super-cycled (discussed later),
gl =y -7 [(g +f)K x \7,,] —V, (F%) — Atgy,P,
. . 1/ . 1/ .
o5p"t —@sp 4+ F {5 (@6pn + fo(OJp")>] +F° [5 (eap" + f>‘(@5p"))] ,

o No explicit diffusion operators in equations (so far!).
Implicit diffusion trough shape-preservation constraints in F and f operators.

CAM-FV has ‘control’ over vorticity at the grid scale through implicit diffusion in the
operators F and f but it does not have explicit control over divergence near the grid scale.
”
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

—n+1 _n 5 1 ——n 9 =N 0 l —~—n AN
5 =5+ P[5 (5" + @) | + F [5 (5" + @)
(Spq'H—1 = super-cycled (discussed later),
an I i [(c + )k x Vh] -V, (F%) — Aty P+Aty, V) (uvf,D),z —0,2
. . 1/ . 1, .
osp"t =@+ F* [5 (eap" + f"(eap”))} + F® [5 (eap” + f)‘(@(;pn))} ,

o No explicit diffusion operators in equations.
o Implicit diffusion trough shape-preservation constraints in F and f operators.

@ The above discretization leads to ‘control’ over vorticity at the grid scale through implicit
diffusion but no explicit control over divergence.

o Add divergence damping (2”d—order or 4th—order) term to momentum equations.
Optionally a ‘Laplacian-like’ damping of wind components is used in upper 3 levels to slow
down excessive polar night jet that appears at high horizontal resolutions.

namelist variable: div24del2flag
More details: Lauritzen et al. (2011); for a stability analysis of divergence damping in CAM see Whitehead et al. (2011)
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Total kinetic energy spectra

FV core

o 250 mb
10 T T —rg A
—— 0.5x0.625 FV
102 — no divergence
N damping effective resolution
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5] 2 ! correct
[} > model | spectrum
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Figure: (left) Solid black line shows k3 slope (courtesy of D.L. Williamson). (right) Schematic of ‘effective resolution’ (Figure from Skamarock (2011)).

o (left) Without divergence damping there is a spurious accumulation of total kinetic energy
associated with divergent modes near the grid scale.

o (right) Note: total kinetic energy spectra can also be used to assess ‘effective resolution’
(see, e.g., discussion in Skamarock, 2011)
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Time-stepping: the ‘CD’- grid approach

Figure from Lin and Rood (1997).

Definition of Arakawa C and D horizontal staggering (Arakawa and Lamb, 1977):

@ C: velocity components at the center of cell faces and orthogonal to cell faces and mass
variables at the cell center. Natural choice for mass-flux computations when using Lin and
Rood (1996) scheme.

o D: velocity components parallel to cell faces and mass variables at the cell center. Natural

choice for computing the circulation of vorticity (% — g—;).
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Time-stepping: the ‘CD’- grid approach

o For the flux- and advection operators (F and f,
respectively) in the Lin and Rood (1996) scheme
the time-centered advective winds (u*, v*) for the
cell faces are needed:

e

@ An option: extrapolate winds (as in
semi-Lagrangian models) = can result in noise
near steep topography (Lin and Rood, 1997).

R

Figure from Lin and Rood (1997).

@ Instead, the equations of motion are integrated forward in time for %Atdy,, using a C grid
horizontal staggering.

o These C-grid winds (u*, v*) are then used for the ‘full’ time-step update (everything else
from the C-grid forecast is ‘thrown away’).

@ The ‘full’ time-step update is performed on a D-grid.
o For a linear stability analysis of the ‘CD’-grid approach see Skamarock (2008).
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Vertical remapping

o CAM-FV uses a Lagrangian (‘floating’) vertical coordinate .
o ¢ is retained ksplit dynamics time-steps Atgyp.
o Hereafter the prognostic variables are remapped to the Eulerian vertical grid n (the vertical

remapping is performed using a mass and energy conserving method, see Lin 2004).

o ksplit is set in namelist:

-nsplit ksplit

@ The ‘physics time-step is set in the namelist:

-dtime At,

where At s is given in seconds.

o At every physics time-step At the variables are

A remapped in the vertical as described above.
@ So the dynamics time-step Atgy, is controlled with
__/:\.‘ ksplit and At in the namelist:
A4 A At = ksplit X Atqyp.

(in CAMS there is also an option to vertical remap more often)
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Vertical remapping

o CAM-FV uses a Lagrangian (‘floating’) vertical coordinate .
o ¢ is retained ksplit dynamics time-steps Atgy,.

o Hereafter the prognostic variables are remapped to the Eulerian vertical grid n (the vertical
remapping is performed using a mass and energy conserving method, see Lin 2004).

o ksplit is set in namelist:

-nsplit ksplit

o Default setting for the 1.9%x2.5 resolution is ksplit = 4
and At = 1800s (so Atgy, = 450s).

@ ksplit is usually chosen based on stability.

o (meridians are converging towards the poles) To
stabilize the model (and reduce noise) FFT filters are

applied along latitudes North/South of approximately
36°N/S.
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field

@ which, in turn, feeds back on the solution to the continuity equation.
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:

thermodynamic variables and other prognostic variables feed back on the velocity field

which, in turn, feeds back on the solution to the continuity equation.

Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed
by the fastest waves in the system.
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field

@ which, in turn, feeds back on the solution to the continuity equation.

@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed
by the fastest waves in the system.

@ The passive tracer transport equation can be solved in isolation given prescribed winds and

air densities, and is therefore not susceptible to the time-step restrictions imposed by the
fastest waves in the system.
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Super-cycling (also referred to as sub-cycling) of tracers

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed

by the fastest waves in the system.

@ The passive tracer transport equation can be solved in isolation given prescribed winds and
air densities, and is therefore not susceptible to the time-step restrictions imposed by the
fastest waves in the system.

o For efficiency: Use longer time-step for tracers than for air.

At

Aty Aty Ay, Aty

Aty

Attrac is time-step of the tracers. Specified in terms of nspltrac (default for 1.9 X 2.5 resolution is nspltrac=1).

Leads to a major ‘speed-up’ of dynamics.
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Free-stream preserving ‘super-cycling’ of tracers with respect to air p

Simply solving the tracer continuity equation for q6p"+ using At¢ac will lead to inconsistencies.
Why?

Continuity equation for air dp
Jop

— 4+ V- (6p¥y) =0, 4
5L+ (0p7) @
and a tracer with mixing ratio g
a(é, .
%Jrv(cquw):o’ (5)

For g = 1 equation (5) reduces to (4). If this is satisfied in the numerical discretizations, the
scheme is ‘free-stream’ preserving.

Solving (5) with ¢ = 1 using Attrac will NOT produce the same solution as solving (4) nspltrac
times using Atqy,! J
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Graphical illustration of ‘free stream’ preserving transport of tracers

Assume no flux through East cell wall.

p
flow direction
pI'I
time
@ Solve continuity equation for air p = dp together with momentum and thermodynamics
equations. J
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Graphical illustration of ‘free stream’ preserving transport of tracers

Assume no flux through East cell wall.

p
flow direction
npn+114
p
time
@ Solve continuity equation for air p = dp together with momentum and thermodynamics
equations. J
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Assume no flux through East cell wall.

Graphical illustration of ‘free stream’ preserving transport of tracers

flow direction

n+2/4
P niua

o Repeat ksplit times

FUT AL UTAL

@ Solve continuity equation for air p = dp together with momentum and thermodynamics

Peter Hjort Lauritzen (NCAR)
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Graphical illustration of ‘free stream’ preserving transport of tracers

Assume no flux through East cell wall.

flow direction

time

TRy N ENTLEL RTINS

@ Solve continuity equation for air p = dp together with momentum and thermodynamics

equations.

o Repeat ksplit times
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Graphical illustration of ‘free stream’ preserving transport of tracers

Assume no flux through East cell wall.

flow direction

time ¥

§.un+:<)/4At {'UMZIAAH'U"*]"AAI%U"‘A{%

@ Solve continuity equation for air p = dp together with momentum and thermodynamics
equations.

o Repeat ksplit times
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Graphical illustration of ‘free stream’ preserving transport of tracers

Assume no flux through East cell wall.

flow direction

time &

i‘Um:‘MAI %u”*mAt%ummAt%u"At%

@ Solve continuity equation for air p = dp together with momentum and thermodynamics
equations.

Repeat ksplit times

Brown area = average flow of mass through cell face.

Compute time-averaged value of g across brown area using Lin and Rood (1996) scheme:
<q>.

o Forecast for tracer is: < q > x 3K gpnti/ksplit

@ Yields ‘free stream’ preserving solution!
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CAM-FV performance

o CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing and
accounts for most of the computational ‘work’ in the dynamical core.
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CAM-FV performance

o CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing and
accounts for most of the computational ‘work’ in the dynamical core.

o Rasch et al. (2006) did a comprehensive study of the characteristics of atmospheric transport
using three dynamical cores in CAM (CAM—FV, CAM-EUL, CAM-SL; acronyms defined
later):

The results from this study favor use of the CAM-FV core for tracer transport. Unlike the
others, CAM-FV

o is inherently conservative

o less diffusive (e.g. maintains strong gradients better)

e maintains the nonlinear relationships among variables required by thermodynamic and mass
conservation constraints more accurately.
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CAM-FV performance

e CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing and
accounts for most of the computational ‘work’ in the dynamical core.

o Rasch et al. (2006) did a comprehensive study of the characteristics of atmospheric transport
using three dynamical cores in CAM (CAM—FV, CAM-EUL, CAM-SL; acronyms defined
later):

The results from this study favor use of the CAM-FV core for tracer transport. Unlike the
others, CAM-FV

o is inherently conservative
o less diffusive (e.g. maintains strong gradients better)
e maintains the nonlinear relationships among variables required by thermodynamic and mass

conservation constraints more accurately.
v

However, with respect to ‘meteorology’ CAM-FV needs higher horizontal resolution to produce
results equivalent to those produced using the spectral transform dynamical core in CAM (CAM-
EUL). See Williamson (2008) for details.

Peter Hjort Lauritzen (NCAR) Atmosphere Modeling I: Introduction & Dynamics July 30, 2012



Idealized settings for CAM

o ADIABATIC: No physics. See example of application in Jablonowski and Williamson (2006)
and Lauritzen et al. (2010).

o IDEAL PHYS: Held-Suarez test case (Held and Suarez, 1994):

o Simple Newtonian relaxation of the temperature field to a zonally symmetric state
o Rayleigh damping of low-level winds representing boundary-layer friction

@ AQUA_PLANET: Ocean only planet with zonally symmetric SST-forcing using ‘full’ physics
package (Neale and Hoskins, 2000). See example of application in Williamson (2008).
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Other dynamical core options in CAM

CAM3 (‘old’) dynamical core options:
o CAM-EUL and CAM-SLD (Collins et al., 2004):

@ Based on the spectral transform method and semi-implicit time-stepping
@ EUL/SLD = Eulerian/semi-Lagrangian discretization in grid-point space.

@ Tracer transport with non-conservative semi-Lagrangian scheme (‘fixers’ restore formal mass-conservation)

New dynamical core options:
o CAM-SE (Evans et al., 2012): Spectral Elements

© A dynamical core in HOMME (High-Order Method Modeling Environment, Thomas and Loft §
2005). . 5

@ For each element: Mass-conservative to machine precision and total energy conservative to

the truncation error of the time integration scheme
@ Discretized on cubed-sphere (uniform resolution or conforming mesh-refinement) and highly

scalable

@ Default dynamical core in the next release of CAMS5 (planned November 2012)

o CAM-MPAS (Skamarock et al., 2012): Finite-volume
unstructured
@ MPAS = Model for Prediction Across Scales
@ Variable resolution centroidal Voronoi tesselation of the sphere
@ Fully compressible non-hydrostatic discretization similar to Advanced Research WRF (ARW)
model (Skamarock and Klemp, 2008)
Currently being integrated into CAM

Figures courtesy of R.D. Nair (upper) and W.C. Skamarock (lower).
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CAM-SE (spectral element dynamical core); (Dennis et al., 2012)

CAM-SE uses a continuous Galerkin finite element method (Taylor et al., 1997) referred to as
Spectral Elements (SE):

/4
(-1.41) (+141)
Legendre Polynomials (Degree <=4)
1|2 k=0
x! 0
(-1-1) (+1.-1) ‘_,"
-1/4 x? +1/4 -1
-1 05 0 05 1
x
Physical Domain Computational Domain GLL Quadrature Grid

Figures from Nair et al. (2011)

o Physical domain: Tile the sphere with quadrilaterals using the gnomonic cubed-sphere
projection

o Computational domain: Mapped local Cartesian domain
o Each element operates with a Gauss-Lobatto-Legendre (GLL) quadrature grid
Gaussian quadrature using the GLL grid will integrate a polynomial of degree 2N — 1 exactly, where N is degree of polynomial

o Elementwise the solution is projected onto a tensor product of 1D Legendre basis functions
by multiplying the equations of motion by test functions; weak Galerkin formation

— all derivatives inside each element can be computed analytically!
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CAM-SE (spectral element dynamical core); (Dennis et al., 2012)

CAM-SE uses a continuous Galerkin finite element method (Taylor et al., 1997) referred to as
Spectral Elements (SE):

Qj xj+1/2 Qj+1

Figures from Nair et al. (2011)

How do solutions in each element ‘communicate’ with each other?
@ The solution is projected onto the space of globally continuous (C°) piecewise polynomials
e — point values are forced to be C% continuos along element boundaries by averaging.
@ Note: this is the only operation in which information ‘propagates’ between elements
°

MPI data-communication: only information on the boundary of elements!
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CAM-SE (spectral element dynamical core); (Dennis et al., 2012)

CESM1 F1850, ATM component, BGP
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NCORES

Figure from Dennis et al. (2012)

CAM-SE has superior scalability properties compared to other dynamical core options in CAM
— given a sufficiently large machine we can run climate simulations at unprecedented resolutions J
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CAM-SE (spectral element dynamical core); (Dennis et al., 2012)

CLIMATOLOGY 250mb
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Solid lines: total kinetic energy of V at 250hPa, E(k). Dotted lines: E(k) including only divergent component of V. Figure from Evans et al. (2012)

o 1/8° resolution: clear transition from k=3 to k—5/3 (Nastrom and Gage, 1985)!

o Widely accepted that dynamics of k—3 regime correspond to downscale cascade of enstrophy;
there is no consensus concerning the k—5/3 regime (Lilly et al., 1998; Lindborg, 2006).

@ —The characterization of k—3/3 regime represents one of the major unanswered questions in
mesoscale atmospheric dynamics!

Some of the first global models to simulate k—5/3's transition: Takahashi et al. (2006); Hamilton et al. (2008)
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Interested in numerical methods for global models?

P.H. Lauritzen - C. Jablonowski
M. A. Taylor - R. D. Nair ditors

Numerical Techniques
for Global Atmospheric
Models

Editorial Board
T.J.Barth

M. Griebel

D.E Keyes

.M. Nieminen
D.Roose

@ Springer T.5chlick

=
z
5
2
z
s

S
8
g
2
g
g
=
5
2
=
2
=

@ Book based on the lectures given at the 2008 NCAR ASP (Advance Study Program) Summer Colloquium.

@ 16 Chapters; authors include J. Thuburn, J.Tribbia, D.Durran, T.Ringler, W.Skamarock, R.Rood, J.Dennis, Editors, ...
Foreword by D. Randall

@ More details at: http://www.cgd.ucar.edu/cms/pel/colloquium.html and http://www.cgd.ucar.edu/cms/pel/Incse.html
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Excessive polar night jet when increasing horizontal resolution

Pressure (mb)

2 degree

Zonal wind speed difference plots
CAM4 (DJF zonal average over years 2-11)
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Figure:

@ 15 row: difference between zonal wind speed and observations (NCEP) during Northern winter using default CAM.

@ 2 row: same as 15 row but for default CAM + v 2-like’ damping of velocity components near model top

‘Laplacian-like’ damping of wind components near model top alleviates this problem
(optional in CAM5; controlled with namelist variable div24del2flag)

More details: Lauritzen et al. (2011)
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Noise in divergence field aligned with grid

Instantaneous divergence around 200 hPa in units of 110~ /s

Default CAM CAM using Default CAM CAM using
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| Divergence associated with “physical” features seem preserved while grid-scale noise is alleviated |

@ The noise can be reduced by increasing the divergence damping coefficient (at the cost of
excessive damping in terms of total kinetic energy spectra analysis) or using 4th_order
divergence damping (option added to CAMS; namelist variable div24del2t1ag)

o 4th_order divergence damping significantly reduces noise when running CAM in ‘weather
forecast-mode’ using DART (DART = Data Assimilation Research Testbed). More details: Lauritzen et al. (2011)
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