Intro to Biogeochemical Modeling Ocean & Coupled

Keith Lindsay, NCAR/NESL/CGD

NCAR is sponsored by the National Science Foundation

Lecture Outline

- 1) Large Scale Ocean Biogeochemical Features
- 2) Techniques for Modeling Biological Productivity
- 3) Skill Assessment
- 4) Global Carbon Cycle
- 5) Summary

NO₃ (a nutrient), O₂ (dissolved gas) Along Pacific Transect

DIC (~CO₂) Along Same Pacific Transect

Takahashi Air-Sea CO₂ Gas Flux

Mean Annual Air-Sea Flux for 2000 [Rev Dec 10] (NCEP II Wind, 3,040K, Γ=.26)

Primary Processes Governing Distribution of Nutrients, O₂, Carbon, etc.

- Biological Productivity in Euphotic Zone
 - Consumes Nutrients & Inorganic Carbon
 - Produces Organic Matter & O₂
- Export of Organic Matter out of Euphotic Zone
 - Sinking Particles (e.g. detritus, CaCO₃ shells, ...)
 - Circulation of Suspended Matter
- Remineralization of Organic Matter
 - 'reverse' of productivity, consumes O_2
- General Circulation
 - Advective Transport
 - Lateral & Vertical Mixing
- Temperature Dependent Air-Sea Gas Exchange

Other Processes, Smaller Global Impact, Locally Significant

- Atmospheric Nutrient Deposition
 - Fe, N, P, ...
- Sedimentary Burial
- Riverine Inputs

Large Scale Ocean Carbon Cycle

What is an NPZD model?

- N Nutrient nitrate, ammonium, phosphate, silicate, iron, etc.
- P Phytoplankton photosynthesizers
- Z Zooplankton grazers
- D Detritus

<u>Canonical Example</u> Fasham, Ducklow, McKelvie, Journal of Marine Research, Vol. 48, pp. 591-639, 1990.

Many more variations are used...

Fasham model diagram from www.gotm.net

Simple NPZ Model

$$\frac{dP}{dt} = \mu_0 \left(\frac{N}{k_N + N}\right) \left(1 - e^{\alpha E/\mu 0}\right) P - g\left(\frac{P}{k_P + P}\right) Z - m_P P$$

Nutrient Light limitation

Grazing Mortality

$$\frac{dZ}{dt} = ag\left(\frac{P}{k_P + P}\right)Z - m_Z Z$$

$$\frac{dN}{dt} = -\mu_0 \left(\frac{N}{k_N + N}\right) \left(1 - e^{\alpha E/\mu 0}\right) P + (1 - a)g\left(\frac{P}{k_P + P}\right) Z + m_P P + m_Z Z$$

Three coupled ordinary differential equationsMass conservation

How do you estimate parameters and functional forms?

- Laboratory & field incubations
 - P-I curves
 - Nutrient uptake curves
- Tune/Optimize against field data
- Previous Models

Plankton Functional Types (PFTs)

- Categorize plankton species by how they function and use representative types/groups
- Example definition from Le Quéré et al., Global Change Biology, Vol. 11, pp. 2016-2040, 2005.
 - Explicit biogeochemical role
 - Biomass and productivity controlled by distinct physiological, environmental, or nutrient requirements
 - Behavior has distinct effect on other PFTs
 - Quantitative importance in some region of the ocean

Skill & Portability in 12 Different NPZD models Friedrichs et al., JGR-Oceans, 2007.

(b) Simple models do just as well as more complex models when tuned for specific sites.

(c) More complex models
do better at multiple sites
with single parameter sets.
(d) More complex models
perform better at different
sites when tuned for one
site.

Primary Features of CESM BEC Model

- 4 Plankton Functional Groups
 - 3 Autotrophs, 1 Grazer
 - Implicit coccolithophores
- Nutrients: N, P, Si, Fe
- Fixed C:N:P ratios in plankton (24 tracers)
- Variable Fe:C, Si:C, Chl:C ratios
- Fe cycle improved in Moore, Braucher, Biogeosciences, Vol. 5, 2008, pp. 631-656.

Known Gaps in Ocean BGC in CESM-(BGC)

- Calcification & CaCO₃ remineralization rates are independent of CO₃ saturation state.
- No riverine inputs of BGC tracers.
- No sediment model.
- No treatment of BGC in sea-ice.

• Focus in on lower trophic levels.

Model Validation: Examples of Data Sets

- Macronutrients (PO₄, NO₃, SiO₃) and O₂ from World Ocean Atlas
- DIC, ALK from GLODAP Analysis
- pCO₂ and CO₂ Flux assembled by Takahashi
- Surface Chl measured by satellite
- Productivity estimated from satellite
- JGOFS study sites
- HOTS & BATS timeseries

Air-sea CO₂ Flux

Doney et al. (Deep-Sea Res. II, 2009)

Satellite Ocean Color Comparison

Known Challenges

- Optimize BGC model parameters
 - Functional group approach increases uncertainty of parameters (i.e. multiple species, with different characteristics, are clumped together)
 - Don't want to overtune too much to compensate for biases in physical model
- Given BGC model parameters and physical circulation, generate balanced BGC state
 - Need to deal w/ diurnal to millenial timescales
 - Using Newton-Krylov for this is a work in progress

Large Scale Global Carbon Cycle

Figure courtesy PMEL

Land & Ocean CO₂ Fluxes from CESM1-BGC

Same plot with Fixed ATM CO₂

CO₂ Seasonal Cycle

CO₂ Response to ENSO

Mauna Loa, Hawaii

Point Barrow, Alaska

Lindsay et al., 2012, J Climate, submitted

Land & Ocean Uptake of Fossil Fuel Emissions

Friedlingstein et al, J. Climate, 2006

Impact of Climate Change on this Uptake

Friedlingstein et al, J. Climate, 2006

Summary

- Large scale ocean biogeochemical features are determined by handful of processes
- 'Perfect' ecosystem model doesn't exist, many simplifications need to be made. Improving models is ongoing research. Scientific questions guide this process.
- Atmospheric CO₂ couples land and ocean carbon cycles, explaining some correlation. Climate variability does as well. Atmospheric CO₂ observations are valuable constraint on models.
- Land & ocean uptake of anthropogenic CO₂, particularly sensitivity to climate change is ongoing research. Modern models show considerable spread for land results.
- Practical Notes are available and will be presented in Land/BGC breakout