Tutorial: Ice sheet modeling in CESM

Bill Sacks NCAR Bill Lipscomb Los Alamos National Lab Kate Evans Oak Ridge National Lab

CISM in CESM

Compsets with active ice sheet

- BG (fully coupled)
- FG (CAM, CLM & CISM)
- IG (CLM & CISM)
- TG (CISM only in CESMI.I)

Limited number of supported resolutions:

- I-degree finite volume (f09)
- 2-degree finite volume (fl9)
- 3.75-degree spectral (T31)

New TG Compset (CESMI.I)

Key: active / data / stub model

CESMI.I: New CISM Features

• CISM2!

- SEACISM dynamical core, parallel solvers, etc.
- BISICLES coming soon
- Ensemble capabilities
- Support for longer time steps in CISM and CESM scripts
 - e.g., I-year time step

CESMI.I: New namelist features

Namelist modifications go in \$CASEROOT/user_nl_cism

For example:

evolution = 0

00	CESM Component Modeles Namelist Definitions			
< ► 1P	+ Shttp://www.cgd.ucar.edu/cseg/modelnl/cesm1_1_beta15/nl_cism.html		C Q- Google	\supset
CISM: Time Manager Settings				
	Namelist Variable	Туре	Group	
▼ <u>allow_leap</u>	year			
Default: .	.false.	logical	time_manager_nml	
▼ <u>date_separ</u>	ator			
Character	to separate date values	char*1	time_manager_nml	
▼ <u>dt_count</u>				
Time step,	, in units given by dt_option	real	time_manager_nml	
▼ <u>dt_option</u>				
time-step	units	char*80	time_manager_nml	
▼ <u>runid</u>				
Simulation	n identifier (ie case name)	char*128	time_manager_nml	
▼ <u>stop_optio</u>	<u>n</u>			
Stop optic	on always let the coupler stop the model so use never.	char*80	time_manager_nml	

CESMI.I: New CLM Features

- Improved glacier cover, consistent with CISM over Greenland
 - Global glacier cover from Alex Gardner
- Ability to output fields averaged only over glacier portion of each grid cell
- Glacier-related bug fixes

Post-CESMI.I: Dynamic Landunits in CLM

Post-CESMI.I: Dynamic Landunits in CLM

Area of cropland, urban, etc.

Hands-on overview: CESM IG run

• IG compset

- Simple CLM source code modification to simulate global warming / cooling over ice sheets
- Look at how this affects the Greenland surface mass balance over a few years

Hands-on overview: Standalone CISM run

- Why standalone CISM
 - access to higher-order, parallel solver
 - standalone useful even when CISM2 comes into CESM, for testing & development, or coupling to other forcing data
- Dome test case
 - Useful for testing the model in a simple configuration
 - Can watch ice evolving
- Greenland 5 km, one-year run, 750 processors