Modeling land ice in the Community Earth System Model

Jeremy Fyke Los Alamos National Laboratory

- •Motivation for simulating land ice in Earth-system models
- •Land ice basics
- •Current and upcoming state of land ice in CESM1.2/1.3
- Ongoing CESM-land ice science and development

motivation for modeling land ice within CESM

- Understand effects of climate change on land ice
- Understand effects of land ice change on climate
- Understand feedbacks between land ice & climate
- Understand past climate change
- Predict future land ice loss and sea level rise
- Predict changes in regional water supply

what is land ice?

glaciers

ice caps

Antarctic Ice Sheet

- 60 m sea-level equivalent (~5 m in marine-grounded parts of West Antarctica)
- Accumulation balanced by flow into floating ice shelves; little surface melting
- Increasing mass loss (~150 Gt/yr) from West Antarctica and the Antarctic Peninsula

Antarctic ice flow speed (Rignot et al. 2011)

Greenland Ice Sheet

- 7 m sea-level equivalent
- Accumulation balanced by surface runoff and iceberg calving (50/50)
- Increasing mass loss (~200 Gt/ yr) since late 1990s from increased surface melting, combined with outlet glacier acceleration

Greenland winter flow speed (Greenland Ice Mapping Project)

glaciers and ice caps

- 200,000+ glaciers and ice caps worldwide
- Only o.6 m sea-level equivalent (Radic & Hock 2010), but short response times
- Most glaciers are out of balance with the climate and are retreating

Modeled surface mass budget, Canadian Archipelago, 2003– 2009 (Gardner et al. 2011)

land ice basics: mass balance and dynamics

mass balance

LAN MAR COMMAND

surface accumulation

surface melting & sublimation

icebergs

bottom melting & freezing

mass balance: atmospheric components

net mass change (kg/yr) = ∫(surface accumulation -surface melt -surface sublimation -basal melt -ice discharge)dA

mass balance: atmospheric + oceanic components

net mass change (kg/yr) = ∫(surface accumulation -surface melt -surface sublimation -basal melt -ice discharge)dA

ice dynamics

internal deformation

basal sliding

how we model ice: coupled conservation equations (dynamical core)

5

Conservation of Momentum:

$$0 = \nabla \cdot \sigma(\mathbf{u}, T) + \rho \mathbf{g}^{\mathsf{r}}$$

Conservation of Energy:

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \mathbf{u} \cdot (\nabla T) + \sigma \mathbf{v} \cdot \mathbf{e}^{\text{recover}}$$

Conservation of Mass:

modelled "physics" (everything besides dynamics)

• Constitutive models:

translate stress tensor to stress-induced velocity

• Basal sliding:

relates of basal slip to temperature, bed roughness, basal water pressure

- Surface and subglacial hydrology: determines basal water pressure (important for sliding, above)
- Iceberg calving:

determines mass loss at ocean boundary

land ice in coupled global climate models

As land ice evolves, it interacts with the surrounding climate in ways that <u>feed back</u> on its own evolution.

Climate model passes:

- •Surface mass balance
- Boundary temperaturesSub-shelf melting

Land ice model passes:

- Elevation
- Revised land ice distribution
- Oceanic heat and moisture fluxes (icebergs)
 - Revised sub-shelf geometry

ice sheets in CESM

- Dynamics and physics: CESM 1.2 includes the Community Ice Sheet Model (CISM)
 - Supports a dynamic *Greenland ice sheet* on a 5 km grid
 - Currently operational: shallow-ice (based on Glimmer-1.6)
 - Higher-order version (CISM 2.0) available but undergoing testing within CESM
- Surface mass balance: CESM includes an energy-balance-based surface-mass-balance scheme for land ice
 - Computed by CLM in multiple elevation classes, then sent to the coupler, downscaled to ice sheet grid
 - Scheme can be applied in all glaciated regions, not just ice sheets

SMB and surface ice temperature

ice sheet surface mass balance in CESM

- CESM computes the SMB and surface ice temperture in the land model (CLM) on a coarse (~100 km) grid in 10 elevation classes
 - Cost savings (~1/10 as many columns)
 - Energetic consistency
 - Avoid code duplication
 - Surface albedo changes feed back on the atmosphere

41W 69N (Central Eastern GIS) subgridding

comparison with RACMO ('state of the art' regional model)

- Good match in ablation zones
- Accumulation is overestimated in the interior and underestimated in the southeast (smoother orography in CESM) Vizcaino et al, 2013

Preindustrial CISM Greenland steady-state perturbed-physics ensemble

Ice elevation

- Script-based coupling approach merges highresolution ice sheet model topography into raw GTOPO-30 dataset, regenerates CAM topography and surface roughness fields in restart file.
- Script called during initialization of simulations and once/year resubmission step

Meltwater runoff and iceberg discharge

- Two (of three) ways for land ice H₂O to reach the ocean: via surface melt, and via iceberg discharge
- Surface melt calculated in CLM, routed to ocean via river transport model
- Iceberg discharge: two routing options under development to route calved ice mass from CISM to ocean:
 - freshwater flux (and negative heat flux) to static distribution of ocean grid cells using nearest-neighbour routing
 - Explicitly to dynamic/thermodynamic iceberg model (nested in the CICE sea ice model, Hunke and Comeau, [2011])

Land ice areal distribution changes

- Ice sheet areal extent influences:
 - Surface roughness
 - Land hydrology
 - Bare-land albedo
 - Dynamic vegetation
- Development ongoing to make CLM landunits 'dynamic', so changes to ice sheet areal extent are mirrored in CLM and CAM boundary conditions

Sub-shelf melting

animation courtesy Xylar Asay-Davis

ice sheet spin-up

- CESM-and-climate-consistent 122,000 year spin up completed through last glacial cycle
- Forced with GRIP δ ¹⁸O-interpolated SMB, end-members from CCSM4 LGM/mid-Holocene/preindustrial IG simulations

Science output with CESM/CISM

CESM Greenland surface mass balance

	20th-century (1980-1999)	RCP8.5 (2080-2099)
SMB (Gt/yr)	372 ± 100	-78 ± 143
Greenland ice she SMB (kg m ⁻² yr ⁻¹) Red = net accumulation Purple = net melting	et	8000 2000 700 500 300 200 100 50 20 -20 -20 -50 -50 -50 -50 -50 -50 -50 -50 -50 -5

- For RCP8.5, precipitation increases, but melt and runoff increase more.
- Warming is greatest in north (less sea ice), least in southeast (weaker MOC).
- Average SMB is negative by 2100, implying long-term decay of ice sheet. Vizcaino et al., in review

CESM RCP8.5 GIS sea level rise contribution

• CESM generates 7.6 cm of SLR, with strong dampening due to negative dynamic feedback

CESM future GIS SMB variability

CESM-CISM ice-sheet/climate feedbacks

- Surface mass balance in ablation zone 7% more negative when height-surface mass balance feedback resolved
- Height-surface mass balance feedback impacts GIS SMB even over IPCC timescales

ongoing development

- 1. Statistical model of glaciers and ice caps in CESM
- 2. Hydrology-sliding coupling
- 3. Higher-order ice sheet models

ongoing development

- 1. Improved models of glaciers and ice caps in CESM
- 2. Hydrology-sliding coupling
- 3. Higher-order ice sheet models

Basal water thickness

Water pressure

figures courtesy M. Hoffman

ongoing development

- 1. Improved models of glaciers and ice caps in CESM
- 2. Hydrology-sliding coupling
- 3. Higher-order, variable resolution ice sheet models

figure courtesy of S. Cornford and D. Martin

CESM Land Ice Working Group

Leadership

- *Co-chairs*: William Lipscomb/Steve Price (LANL), Jesse Johnson (U. Montana)
- Software Liaison: William Sacks (NCAR)

Meetings

• Winter (Boulder), summer (Breckenridge)

LIWG info

- Web site: http://www.cesm.ucar.edu/working_groups/Land+Ice/
- Email list: http://mailman.cgd.ucar.edu/mailman/listinfo/ccsm-liwg

Thank you!