

# Hydrology in the Community Land Model

### Sean Swenson Terrestrial Sciences Section







# The **Community Land Model** is a...? a) Hydrology model b) Land Surface model

# c) Terrestrial Processes model



# The movement of **water** is inextricably linked to the flow of **energy** and the life cycle of **vegetation**





The *modeling* the of movement of water is inextricably linked to the *modeling* of the flow of energy and the *modeling* of the life cycle of vegetation









# **The Water Balance**

 $\mathbf{P} = \mathbf{E} + \mathbf{R} + \Delta \mathbf{S}$ 

P = Precipitation
E = Evapotranspiration
R = Runoff
S = Storage



# **Different Models**, *Different Foci*

# Flood Forecasting $\Rightarrow$ **R**

# NWP, Climate Prediction $\Rightarrow$ E

Drought Monitoring, Groundwater  $\Rightarrow$  S



# **Different Foci, Different Models**

**1-D** ⇒ Darcy Flow (Infiltration/Recharge)

# $2-D \Rightarrow$ River Routing

**3-D**  $\Rightarrow$  Saturated Flow (Groundwater)



# **CLM** is tasked with simulating *all* of these phenomena...

# ...therefore, *trade-offs* will be made.



# Precipitation

 $\Rightarrow$  Partitioning between rain and snow, or between stratiform and convective

 $\Rightarrow$  Canopy interception, storage, and throughfall



# Evaporation

⇒ Evaporation from Soil / Canopy / Snow / Surface Water

 $\Rightarrow$  Transpiration from vegetation







*Runoff* ⇒ Surface Runoff (Infiltration and/or Saturation Excess) ⇒ Subsurface Runoff (Baseflow)

 $\Rightarrow$  River Routing







# Storage

- ⇒ Soil Moisture
- $\Rightarrow$  Groundwater and water table depth
- $\Rightarrow$  Perched water table
- $\Rightarrow$  Canopy water
- $\Rightarrow$  Surface water
- $\Rightarrow$  Snow



#### **Storage Components**









# **CLM Submodels**

- Soil hydrology and thermodynamics model
- Snow model
- Photosynthesis model
- Radiation and albedo model
- River Transport model
- Lake model
- Urban model
- Vegetation dynamics model
- Carbon and nitrogen cycle model
- Volatile Organic Compound emissions model
- Dust emissions model



# **Snow model**

Treats processes such as:

- Accumulation
- Snow melt and refreezing
- Snow aging
- Water transfer across layers
- Snow compaction:
  - destructive metamorphism due to wind
  - overburden
  - melt-freeze cyclesI
- Sublimation
- Aerosol deposition

Up to 5-layers of varying thickness





#### **Snow Radiative Transfer (SNICAR)**

- Snow darkening from deposited black carbon, mineral dust, and organic matter
- Vertically-resolved solar heating in the snowpack
- Snow aging (evolution of effective grain size) based on:
  - Snow temperature and temperature gradient
  - Snow density
  - Liquid water content and
  - Melt/freeze cycling





#### Fractional Snow Covered Area

- Describes sub-gridscale snow cover
- Based on snow water equivalent (SWE)
- Dependent on snow history
- Dependent on snow trajectory





# Soil model

Treats processes such as:

- Soil moisture redistribution
  - Infiltration
  - Darcy flow
  - Recharge
- Soil moisture phase change
- Soil temperature redistribution

Default structure has 10 layers of variable thickness, spanning nearly 4 meters depth

• Thermal calculations use additional deep layers





a) Soil moisture (% saturation)

b) Soil temperature (°C)

Stippling indicates frozen soil





# Groundwater model

- Provides bottom boundary condition Surf
- Groundwater storage increased by recharge, decreased by subsurface flow and exfiltration
- Calculates water table depth





# **River model**

- Routes runoff to the oceans
- Flow directions are obtained from an input dataset
- Calculates water volume and discharge







# **Model Validation Tools**

Ideally, should be:

- Global
- Directly comparable to modeled process/state/flux
- Same spatial / temporal scale
- High accuracy
- Long record

In reality, no datasets meeting these criteria exist...







# Soil Moisture Networks



#### Top panel: CLM soil moisture Bottom: Observed soil moisture







# **River Discharge**





### FLUXNET-MTE

Annual Mean Evapotranspiration

Top panel: FLUXNET-MTE Bottom: CLM





## FLUXNET-MTE

**Columbia River Basin Evapotranspiration** 

Red: FLUXNET-MTE Blue/Green: CLM





### **GRACE** Total Water Storage

0

Mean Annual Amplitude of **Total Water Storage** 

**Top panel: GRACE Bottom: CLM** 





**GRACE** Total Columbia Water Storage 200 **Columbia River Basin** 100 **Total Water Storage** Total Water Storage **Red: GRACE** 0 **Blue/Green: CLM** -100

-200

2002

GRACE CLM4/CRUNCEP/BC.GPCP/soires=orig/1DEG CLM4/CRUNCEP/BC.GPCP/DSL\_CANTURB/LAI.CLIMO

T₩S



### **CLM Application Example: Anthropogenic Groundwater Withdrawal**



RACE - CLM4

NW Inde

Human-induced groundwater changes can be estimated by removing the CLM estimate of TWS from the GRACE estimate of TWS

GRACE TWSCLM TWSGroundwater





# **Simulation Examples I: Tropical**





# **Hydrologically Relevant Surface Data**





### **Hydrologically Relevant Surface Data**





### **Time Series**

lon:300.0/lat:-5.2

Precipitation

































Water Table







The water table determines the fraction of the area that is saturated

Saturated areas produce surface runoff



# **Example: Effects of Modifying the Water Table**

$$\Delta \mathbf{Z}_{\mathbf{WT}} = \mathbf{Q}_{\mathbf{drainage}} - \mathbf{Q}_{\mathbf{recharge}}$$

$$Q_{drainage} = A \exp(-f z)$$

# $Q_{surface} = F \exp(-g z)_{Pthroughfall}$





Runoff







Water Table





lon:300.0/lat:-5.2





# **Current and Future Challenges**

- Subgrid heterogeneity and covariance of vegetation, soil moisture, surface water and snow
- Within-canopy turbulent fluxes
- Human management and withdrawals
- Variable soil depths
- Canopy storage
- Hydrological response to land cover change





