Representing permafrost affected ecosystems in the CLM:

An example of incorporating empirical ideas into the CLM

Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

Biogeochemical consequences

(United States

- Permafrost
- 1672Pg Carbon stored in permafrost
- 1/2 of global soil C stock
- x 2 more than C in the atmosphere

ICELAND

Atlantic Ocean

Thawed permafrost will release C-based greenhouse gases at a faster rate!

WEDEN

Schuur et al. 2008 BioScience Tarnocai et al. 2009 GBC

- Permafrost C

Isolated Sporadic Discontinuous Continuous

Source:International Permafrost Association, 1998. Circumpolar Active-Layer Permafrost System (CAPS), version 1.0.

Potential Arctic-climate feedback

+ Positive feedback

Potential Arctic-climate feedback

- Negative feedback

Physical consequences

- Thermokarst formation

Land surface subsidence created by ice rich permafrost thaw

Changes in local hydrology: Aerobic vs. Anaerobic -> C cycling

Climate effects from permafrost C release

Deep permafrost C release under aerobic and anaerobic conditions : Faster C release under aerobic conditions

Modified from Lee et al. 2012 GCB

Climate effects from permafrost C release

Deep permafrost C release under aerobic and anaerobic conditions : Comparable in atmospheric forcing with CH₄ effect

Modified from Lee et al. 2012 GCB

Research Question 1.

 How does permafrost thaw influence ecosystem carbon balance under warmer world?

Interior Alaska tundra site

Interior Alaska tundra site

Minimal Thaw: Typical tussock tundra before thawing Moderate Thaw: 15-20 yrs of permafrost thaw Extensive Thaw: over 50 yrs of thaw and deep thermokarst

Aboveground carbon balance

CO₂ uptake: GPP

Balance: NEE

CO₂ release: R_{eco}

Autochambers

Aboveground Net Ecosystem Exchange of carbon

Modified from

Schuur, Vogel, Crummer, Lee, Sickman, Osterkamp 2009 Nature 459: 556-559. Vogel, Schuur, Trucco, Lee 2009 J Geophys Res 114, G4, doi:10.1029/2008JG000901.

Carbon neutral when thawing started

Carbon uptake of ~25 g m⁻² in the early stage of thawing

Carbon release of ~32 g m⁻² in the later stage of thawing

Carbon loss by 2099: 4.4-6.0 kg m⁻² (9.4-12.9%)

Permafrost Carbon Loss in global carbon context

Using the three sites as representatives of permafrost thaw...

Permafrost Zone Soil C Gelisol Soil Order (3m)

818 Pg <u>x 9.4-12.9%</u> 77-106 Pg

Permafrost C Loss Current Land Use Change (0.8-1.1 Pg/yr) (1.5±0.5 Pg/yr)

Schuur, Vogel, Crummer, Lee, Sickman, Osterkamp 2009 Nature 459: 556-559.

Research Question 2.

What is the climate feedback from permafrost C?

Improvements in Community Land Model 4.5

Lawrence et al., Journal Advances Modeling Earth Systems, 2011

Physical consequences

- Thermokarst formation

Land surface subsidence created by ice rich permafrost thaw

Changes in local hydrology: Aerobic vs. Anaerobic -> C cycling

Excess ice and permafrost parameterization

Excess ice and permafrost parameterization

Control: Regular CLM soil layers Used ground ice data from NSIDC Continuous: 90-100% Discontinuous: 50-90% Sporadic: 10-50% Isolated: 0-10%

High: > 20% Medium: 10-20% Low: 0-10%

CIRCUM-ARCTIC MAP OF PERMAFROST AND GROUND-ICE CONDITIONS

Brown, J., O.J. Ferrians, Jr., J.A. Heginbottom, and E.S. Melnikov.. 2002. *Circum-Arctic Map of Permafrost and Ground-Ice Conditions*. Version 2. [indicate subset used]. Boulder, Colorado USA: National Snow and Ice Data Center.

Soil temperature patterns: Annual variability

Soil warming slowed ~1°C by the end of the century

Soil moisture patterns

- Soil moisture increases
- Soil water storage increases
- Most of excess ice melt water goes to soil water storage

Surface subsidence simulations (Recent/RCP8.5)

- Land surface subsidence as a function of excess ice melting
- Grid cell mean

Improved model and climate feedback

