#### Soil dynamics in a changing world



Will Wieder 2014 CLM Tutorial





#### How does an ecologist use and improve CLM?





#### Perspectives on the C cycle 1. Global C cycle (esp. soils)



- Past
- Present &
- Future



# Terrestrial Carbon Cycle (Observations)



#### Terrestrial Carbon Cycle (Models)









#### **CMIP5** Models = 6x variation



# CLM4.0-cn (CLM "past")



#### Using data to evaluate models





#### **Climate matters**

#### **Chemistry matters**





Parton et al. Science 2007

Wieder et al. Ecology 2009

#### Which model looks more like reality?

# CLM4.0-cn vs. LIDET DAYCENT



# Rapid soil C turnover in CLM4.0-cn



# Soil C improved w/ DAYCENT?





# Soil C improved w/ DAYCENT?



#### CONCLUSIONS

CLM4-cn: Anemic soil C pools Rapid litter turnover DAYCENT: Better litter turnover Better soil C pools\* \*with modifications for depth

# CLM4.5bgc (CLM "present")



# Permafrost C "observations"



NCSCD from Hugelius et al. 2013

## Permafrost C in models



# Permafrost soils CLM4.5bgc



#### Permafrost soils CLM4.5bgc





# 20<sup>th</sup> century land C sink



#### **C**ONCLUSIONS

CLM4.5bgc: Vertically resolved Large soil C pools 20<sup>th</sup> century land sink Permafrost dynamics

# Microbial models (CLM "Future")







# What are soils?





#### Biology in ESM C cycle?





Plant functional diversity

Agriculture





Schimel & Weintraub SBB (2003); Moorhead & Sinsabaugh Eco. Mono. (2006); Lawrence et al. SBB (2009);Allison et al. Nat. Geo. (2010);Moorhead et al. SBB (2012);Wang et al. Eco Apps. (2013)



#### Microbial models work at global scales



#### Model structure matters (in global change settings)



Wieder et al. Nature Climate Change 2013





Plant functional diversity

Agriculture





#### Validating MIMICS



Wieder et al. BGD (2014); see also Bonan et al. GCB (2013)

#### Validating MIMICS



\* 0-100cm, all models w/ same forcing from CLM4.5 output

#### Model structure matters (increase litter quantity)



Wieder, unpublished

#### **C**ONCLUSIONS

MIMICS: Microbial explicit Microbial traits Physical stabilization Litter quality & quantity More realistic?

#### **New Directions**

- Test ecological theory
- Evaluation & Validation
  - Functional traits (MGE, turnover)
  - Transient response
  - Parameterization
    - scaling relationships (Climate, N, etc.)



# Thank you Theory Observations Models

### **CLM-microbial model**



#### Model structure matters (in global change settings)





Wieder et al. Nature Climate Change 2013

#### Model structure matters (in global change settings)



Wieder et al. Nature Climate Change 2013



#### **CMIP5** Models = 6x variation



## Permafrost soils CLM4.5bgc







# Arctic SOC







