Nitrogen limitation on land: How can it occur in Earth System Models?

R. Quinn Thomas Forest Resources and Environmental Conservation Virginia Tech Blacksburg, VA

Biogeochemistry **13**: 87–115, 1991 © 1991 Kluwer Academic Publishers. Printed in the Netherlands.

Nitrogen limitation on land and in the sea: How can it occur?

PETER M. VITOUSEK¹ & ROBERT W. HOWARTH²

¹ Department of biological Sciences, Stanford University, Stanford, CA 94305, USA

² Section of Ecology and Systematics, Cornell University, Ithaca, NY 14853, USA

What is nitrogen limitation?

What is nitrogen limitation?

Essential element for growth

- Essential element for growth
- Necessary for photosynthesis and carbon uptake

- Essential element for growth
- Necessary for photosynthesis and carbon uptake
- Easily lost from ecosystems through disturbance

- Essential element for growth
- Necessary for photosynthesis and carbon uptake
- Easily lost from ecosystems through disturbance
- Energetically costly to fix nitrogen from atmosphere

- Essential element for growth
- Necessary for photosynthesis and carbon uptake
- Easily lost from ecosystems through disturbance
- Energetically costly to fix nitrogen from atmosphere

- Essential element for growth
- Necessary for photosynthesis and carbon uptake
- Easily lost from ecosystems through disturbance
- Energetically costly to fix nitrogen from atmosphere

Why Earth System Models?

 Goal: Predict the allowable emissions that avoid exceeding a temperature target

Why Earth System Models?

 Goal: Predict the allowable emissions that avoid exceeding a temperature target

Carbon cycle feedbacks

Atmospheric CO₂

+ Stabilizing f Feedback f Land C sink

Temperature

Amplifying +
Feedback +
Land C sink

Carbon climate feedback

Wide range of predictions for future carbon sink

Friedlingstein et al. 2006 J of Climate

Carbon feedbacks impact effective emissions

Arora et al. 2013 J of Climate

Components of the land carbon sink

C sink =

Plant C uptake - C release by decomposition

Reich et al. 1997 PNAS, Reich et al. 2008 Ecol. Letters, White et al. 2005 Earth Interactions

Overly optimistic CO₂ fertilization?

Hungate et al. 2003 Science; Norby et al. 2010 PNAS

Overly optimistic CO₂ fertilization?

Hungate et al. 2003 Science; Norby et al. 2010 PNAS

Overly negative carbon loss?

Overly negative carbon loss?

Carbon-nitrogen interactions impact effective emissions

Arora et al. 2013 J of Climate

Typical result from Earth System models with carbon and nitrogen interactions

N cycle is resolved at the landunit scale

How do we model coupled C & N cycles: CLM-CN: Allocation and Plant N limitation

How do we model coupled C & N cycles: CLM-CN: Allocation and Plant N limitation

How do we model coupled C & N cycles: CLM-CN: Allocation and Plant N limitation

How do we model coupled C & N cycles: Microbial example

Most nitrogen is recycled

Cleveland et al. 2013 PNAS

CLM-CN 4.0: General N cycle structure

CLM-CN 4.0: General N cycle structure

Mechanisms that govern N limitation

Steady-state and transient processes

Pathway	Mechanism
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements
Transactional	slow release of N from complex organic into soluble forms, relative to the supply of other resources
Sink driven	sequestration of available N in an accumulating pool within ecosystems
Sources: Vitousek and Howarth (1991), Vitousek and Field (1999), and Vitousek (2004).	

Transient-only processes

Vitousek et al. 2010 Ecol. Applications

Mechanisms that govern N limitation

Steady-state and transient processes

Pathway	Mechanism
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements
Transactional	slow release of N from complex organic into soluble forms relative to the supply of other resources
Sink driven	sequestration of available N in an accumulating pool within ecosystems

Sources: Vitousek and Howarth (1991), Vitousek and Field (1999), and Vitousek (2004).

Vitousek et al. 2010 Ecol. Applications

Demand-independent losses

Demand-independent losses

Demand-independent losses

Mechanisms that govern N limitation

Steady-state and transient processes

Pathway	Mechanism
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements
Transactional Sink driven	slow release of N from complex organic into soluble forms, relative to the supply of other resources sequestration of available N in an accumulating pool within ecosystems

Sources: Vitousek and Howarth (1991), Vitousek and Field (1999), and Vitousek (2004).

Vitousek et al. 2010 Ecol. Applications

Constraints to Biological Fixation

Constraints to Biological Fixation

Constraints to Biological Fixation

Cleveland et al. 1999 Global Biogeochemical Cycles

N fixation < Demand-independent losses

How to classify losses in Earth System Models?

Demand-dependent losses < N deposition

Menge 2011 Ecosystems

Mechanisms that govern N limitation

Pathway	Mechanism
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements
Transactional	slow release of N from complex organic into soluble forms, relative to the supply of other resources
Sink driven	sequestration of available N in an accumulating pool within ecosystems

Sources: Vitousek and Howarth (1991), Vitousek and Field (1999), and Vitousek (2004).

Transient-only processes

Vitousek et al. 2010

Transactional N limitation

Thornton and Rosenbloom 2005 Ecological Modelling

Parton et al. 1993 Glob. Biogeochemical Cycles

Transactional N limitation

Thornton and Rosenbloom 2005 Ecological Modelling

Parton et al. 1993 Glob. Biogeochemical Cycles

Mechanisms that govern N limitation

Pathway	Mechanism
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements
Transactional	slow release of N from complex organic into soluble forms, relative to the supply of other resources
Sink driven	sequestration of available N in an accumulating pool within ecosystems

Sources: Vitousek and Howarth (1991), Vitousek and Field (1999), and Vitousek (2004).

Transient-only processes

Vitousek et al. 2010

Sink-driven N limitation

Sink-driven N limitation

Progressive N limitation

Luo et al. 2004 Bioscience

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

Model comparison to data: Model response compared to observations

Nitrogen fertilization experiments
¹⁵N tracer studies

▲ Plot/small catchment nitrogen budgets

Thomas et al. 2013 Global Change Biology

Model comparison to data: Plot/Small Catchment Nitrogen Budgets

Thomas et al. 2013 Global Change Biology Observations from NiRENA project: Goodale et al.

Add N to ecosystem and measure response

Measure inorganic N leaching relative to N deposition

Measure leaf chemistry (N:P ratios)

Measurement of N fixation relative to DON leaching

Instantaneous metric in models (actual NPP/potential NPP)

CLM-CN 4.0

(Thornton et al. 2009 Biogeosciences)

O-CN

(Zaehle et al. 2011 Nature Geoscience)

()_()N

(Zaehle et al. 2011 Nature Geoscience)

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

nature geoscience

ERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

)_()N

(Zaehle et al. 2011 Nature Geoscience)

nature geoscience

ERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

nature geoscience

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

How potential primary productivity is limited by nitrogen

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

nature geoscience

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

How potential primary productivity is limited by nitrogen Fixed Vegetation C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

geoscience

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

How potential primary productivity is limited by nitrogen Fixed Vegetation C:N Variable Vegetation C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

geoscience

How potential primary productivity is limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Fixed Soil Organic Matter C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

geoscience

How potential primary productivity is limited by nitrogen

Fixed Vegetation C:N

Fixed Soil Organic Matter C:N

Variable Vegetation C:N

Variable Soil Organic Matter C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

geoscience

How potential primary productivity is limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Fixed Soil Organic Matter C:N

Variable Soil Organic Matter C:N

Differing mechanisms governing N loss

Global nitrogen fertilization experiment

- 25 year simulations (1985-2009)
- Nitrogen applied globally at five levels continuously
 - Low application to parallel plausible changes in nitrogen deposition (0.5 g N m⁻² yr⁻¹)
 - Higher applications to parallel field experimental additions of nitrogen fertilizer to terrestrial ecosystems (2.0, 4.0, 10.0 g N m⁻² yr⁻¹)
 - High application to test nitrogen saturation (30.0 g N m⁻² yr⁻¹)
- Same climate inputs and land-use history

Global nitrogen fertilization response: High addition (30.0 g N m⁻² yr⁻¹)

CLM-CN ANet Primary Productivity

Global nitrogen fertilization response: High addition (30.0 g N m⁻² yr⁻¹)

O-CN \triangle Net Primary Productivity

Global nitrogen fertilization response: High addition (30.0 g N m⁻² yr⁻¹)

O-CN \triangle Net Primary Productivity

Thomas et al. 2013 Global Change Biology

CLM-CN more responsive to nitrogen than O-CN

Model comparison to data: Model response compared to observations

Nitrogen fertilization experiments
¹⁵N tracer studies

▲ Plot/small catchment nitrogen budgets

Thomas et al. 2013 Global Change Biology

Model comparison to data: NPP response to N fertilization

Thomas et al. 2013 Global Change Biology

What controls the C cycle response to N additions? Alternative versions of the CLM-CN

- Removed N gas loss that is 1% of net mineralization
- Denitrification based on environmental conditions
- Soil NH_4^+ and NO_3^- pools
- Reduced light use efficiency (Bonan et al. 2011,2013)
- Vertical soil layers
- Modified the timing of N fixation in high latitudes
NPP response to N fertilization: CLM-CN 4.0 vs. CLM-CN 4.5

Model requires 1000s of years for spin-up

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).
- What governs the potential productivity?

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).
- What governs the potential productivity?
- What is the appropriate time scale for simulating the coupling between the C and N scales?

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).
- What governs the potential productivity?
- What is the appropriate time scale for simulating the coupling between the C and N scales?
- What is the competition between plants and microbes for N?

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).
- What governs the potential productivity?
- What is the appropriate time scale for simulating the coupling between the C and N scales?
- What is the competition between plants and microbes for N?
- Role of disturbance in N cycling difficult to simulate.

- Model requires 1000s of years for spin-up
- Data on key inputs (fixation) and losses (denitrification) are lacking.
- Degree of stoichiometric flexibility is unknown (buffering).
- What governs the potential productivity?
- What is the appropriate time scale for simulating the coupling between the C and N scales?
- What is the competition between plants and microbes for N?
- Role of disturbance in N cycling difficult to simulate.
- Involves coarsely representing fine-scale non-linear processes.

Many other pathways that N influences climate: What happens when adding N?

Many other pathways that N influences climate: What happens when adding N?

Pinder et al. 2012 PNAS

Tg CO_2e (20-year GTP)

Many other pathways that N influences climate: What happens when adding N?

Pinder et al. 2012 PNAS

Tg CO₂e (20-year GTP)

Questions?

R. Quinn Thomas Forest Resources and Environmental Conservation Virginia Tech Email: <u>rqthomas@vt.edu</u>

Transactional N limitation

Transactional N limitation

Parton et al. 1993 Glob. Biogeochemical Cycles

Transactional N limitation

Parton et al. 1993 Glob. Biogeochemical Cycles

Carbon response to N addition: Nitrogen deposition vs. nitrogen fertilization

Carbon response to N addition: Nitrogen deposition vs. nitrogen fertilization

What controls the C cycle response to N additions? Alternative versions of the CLM-CN

- Michaelis-Menten plant N uptake
- Reduced N fixation in mature extra-tropical forests
- Removed N gas loss that is 1% of net mineralization
- Denitrification based on environmental conditions
- Soil NH₄⁺ and NO₃⁻ pools
- Reduced light use efficiency (Bonan et al. 2011,2013)

Model comparison to data: Model response compared to observations

5 sites, 6 fertilization experiments (4 in Michigan, 1 in Massachusetts) 10+ years of observations

Model comparison to data: NPP response to N fertilization

Thomas et al. 2013 Biogeosciences

Model comparison to data: ¹⁵N Tracer studies

Thomas et al. 2013 Biogeosciences

Model comparison to data: C increment response to N deposition

Implications of alternative approaches to modeling N cycling

Thomas et al. 2013 Biogeosciences