

High resolution climate simulations with CESM: What does the high resolution buy us?

Cécile Hannay, Julio Bacmeister, Rich Neale, John Truesdale, Kevin Reed, and Andrew Gettelman.

National Center for Atmospheric Research, Boulder

CESM Tutorial, NCAR, Boulder, Aug 11-15 2014

Common wisdom

"The expectation is that increasing spatial resolution will generally cause the simulation to improve because of a more accurate topography, and a better large-scale circulation"

What does the high resolution buy us ?

Analysis focuses on precipitation and tropical cyclones

United States Topography

Observation

CAM at 1 degree (standard resolution)

CAM at T31 (This tutorial)

CAM at 0.25 degree (high resolution)

Precipitation, JJA

Increased wet bias in northern ITCZ

Asian Monsoon, JJA

Asian Monsoon, JJA

Red vector: Winds at 850 mb; Contour: Wind divergence

Seasonal pattern \Leftrightarrow High frequency data (daily)

How often does it rain ?

Precipitation frequency (%) = Number of rainy days (>1 mm/day) Total number of days

• How hard does it rain?

Precipitation intensity (mm/day) =	Total amount of precipitation
	Number of rainy days (>1 mm/day)

Dai et al. (2007)

TRMM: Precipitation intensity and frequency (ANN)

In observations, precipitation amount is mainly determined by the precipitation frequency

Intensity and frequency: CAM (1°) versus obs

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

TRMM: Precip intensity (mm/day)

CAM (1°) => rains too often

CAM (1°) but not hard enough

Intensity and frequency: CAM (025°) vs obs

TRMM: Precip intensity (mm/day)

CAM (0.25°) => mixed result

Problem persists at higher resolution (despite some improvements) !

Extreme precipitation

PDFs of precipitation (August 2005)

Courtesy Julio Bacmeister

Diurnal cycle of rainfall (JJA)

In observations: Land: evening max Ocean: early morning max

At coarse resolution,

- Rains too early especially over land
- Diurnal cycle amplitude too weak

Diurnal cycle improves at higher resolution

Courtesy Rich Neale

Tropical Cyclone Tracks

Observations: IBTrACS

CAM5: 1 degree

• Tropical cyclone tracks identified by GFDL tracking algorithm

• CAM5 at 0.25 degree has some skills to simulate tropical cyclones

CAM5: 0.25 degree

Courtesy: Kevin Reed [See also: Wehner et al. 2014, JAMES]

Storm Count: Tropical Storm, Hurricane, Major Hurricane.

Courtesy: Kevin Reed [See also: Wehner et al. 2014, JAMES]

Conclusions

Mean climate:

- Mean precipitation bias is not much improved at higher resolution.
- Some biases even get worse (dry Micronesia bias, double ITCZ...)

Daily data:

- In CAM5: rains too often but not hard enough.

Despite some improvements, the problem persists at higher resolution.

Diurnal cycle

At coarse resolution, CAM fails to reproduce observed diurnal cycle

- Rains too early especially over land
- Diurnal cycle amplitude too weak
- Diurnal cycle improves at higher resolution but some bias remains

Extreme events

CAM at 0.25 degree has some skills to reproduce extreme precipitation and tropical cyclones

Thanks !

What is the impact of resolution for future projections ?

Time-slice experiments

- Present-day conditions
 Observed SSTs: Merged Hadley-OI
- Future conditions CESM SSTs: RCP4.5 & RCP8.5

+ bias correction

We use the present-day SSTs bias as a correction for RCP SSTs (Use 12-month cycle correction).

Changes in precipitation intensity/frequency

In warmer climate: it rains harder but less frequently (Consistent with Trenberth et al. 2003)

Extreme precipitation in warmer climate

intense in a warmer climate

Courtesy Julio Bacmeister

Tropical Cyclone count and intensity in warmer climate

But the most intense storms become more intense.

Courtesy: Kevin Reed

In a warmer climate:

- It rains harder but less frequently
- **Extreme** precipitation are more intense
- The number of tropical cyclones decreases but the most intense storms become more intense.

Future work:

- Prediction depends on the SSTs.
- Impact of the SST bias and bias correction in the RCP runs.