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(Parameterization of unresolved processes will be covered in 
following lecture)

 



Important Ocean Properties

•  The heat capacity per volume of the ocean is much larger than the 

atmosphere. (3m of ocean ≈ entire atmospheric column above). Important 
reservoir for heat, CO2, & other constituents of the Earth system.


•  There is extremely small diapycnal mixing (across density surfaces) once 
water masses are subducted below the mixed layer [Kv = O(10-5 m2/s)]. 
This is why water masses can be named and followed around the ocean.


•  The ocean is a 2 part density fluid (temperature and salinity). Form ice 
when temperature <-1.8oC & resulting brine rejection increases salinity of 
adjacent water parcels.


•  Once formed, ocean density (heat/salt) anomalies persist è The ocean 
contains the memory of the climate system… Important implications for 
climate variability & predictability.


•  The density change from top to bottom is much smaller than the 
atmosphere – 1.02 to 1.04 gr/cm3.  This makes the Rossby radius (NH/f) 
(turbulence scale) much smaller – 10s->100s km. 


•  Top to bottom “lateral” boundaries è leading order influence of 
topography on dynamics è ocean gyres & associated heat transport







Ocean Modelling Challenges


Highly irregular domain; land boundary exerts strong control on ocean dynamics
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Ocean Modelling Challenges


Bathymetry (km),   1/30o ETOPO2




Ocean Modelling Challenges


Bathymetry (km),   1/10o POP  (“tx0.1”)
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Bathymetry (km),   1o POP  (“gx1v6”)




Ocean Modelling Challenges


Bathymetry (km),   3o POP  (“gx3v7”)




Ocean Modelling Challenges


Paleoclimate modelling can entail significant changes in ocean domain…




LO-‐RES	  (3o)	  
O(100+	  years/day)	  

WORKHORSE	  (1o)	  
O(10-‐100	  years/day)	  

HI-‐RES	  (0.1o)	  
O(1	  year/day)	  

Ocean Modelling Challenges


Circumference	  of	  Earth	  
~4x105	  km	  

Horizontal	  	  
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MARCH 1998 439C H E L T O N E T A L .

FIG. 5. The global zonally averaged first baroclinic gravity-wave phase
speed c1 (in m s21) obtained from the 18 gridded c1 shown in Fig. 2.

FIG. 6. Global contour map of the 18 3 18 first baroclinic Rossby radius of deformation l1 in kilometers computed by Eq. (2.3) from the
first baroclinic gravity-wave phase speed shown in Fig. 2. Water depths shallower than 3500 m are shaded.

sparse regions of the ocean (e.g., most of the Southern
Hemisphere), broadens the spatial scales of water prop-
erty distributions in regions of sloping isopycnals. Lo-
zier et al. (1994, 1995) have shown that this problem

is further exacerbated by the use of isobaric averaging.
Because mixing in the ocean occurs primarily along
isopycnal surfaces, spatial gradients of water properties
are smaller on isopycnal surfaces than on isobaric sur-
faces. For a given choice of spatial smoothing, spatial
gradients of water properties are thus better retained by
averaging and smoothing historical hydrographic data
along isopycnal surfaces than by isobaric averaging and
smoothing. Lozier et al. (1994) showed that isobaric
averaging can actually yield spurious water mass anom-
alies that are purely artifacts of the isobaric averaging
process.
A new 18 3 18 climatological-average North Atlantic

hydrographic dataset has recently been constructed by
Lozier et al. (1995, referred to hereafter as LOC) based
on isopycnal averaging and minimal spatial smoothing
over scales on the order of 200 km. Expansions of this
dataset to include the South Atlantic and North Pacific
are under way. The sensitivity of the Rossby radius
calculation presented in section 3a to the density cli-
matology from which N2(z) is estimated is investigated
here by comparison with 18 3 18 Rossby radius esti-
mates computed from the LOC climatological average
hydrographic profiles.1st baroclinic Rossby radius (km) ( < Eddy length scale )


Chelton et al., JPO, (1998)


Oceanic deformation radius O(10-200) km << Atmospheric O(1000s) km,

è significantly higher resolution is needed O(0.1o) to resolve ocean “weather” 
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HECHT AND SMITH: THE NORTH ATLANTIC X - 3

While other model deficiencies mentioned above were rec-
ognized, the greatest attention in the mid-1990’s was paid
to the unsolved problem of Gulf Stream separation. Dengg
et al. [1996] provided an excellent review of the subject, in-
cluding a description of the Gulf Stream itself, describing
the very stable location of separation at Cape Hatteras, the
recirculation gyres and downstream development and the
vertical and horizontal profiles of the Stream (see Figure 1
for the geography of the region). Modeling and theoretical
work seemed to indicate that separation was not simply a
function of one dominant physical process, but a more vex-
ing balance of a number of important processes including the
e↵ects of advective nonlinearity, bathymetry (including bot-
tom topography and coastline) and stratification (the possi-
ble role of the interaction of the Gulf Stream with the Deep
Western Boundary Current was commented on but under
appreciated).

Stammer and Böning [1996] and Böning and Bryan [1996]
together provide a review of what we would now call ”eddy-
admitting” modeling of the North Atlantic. We proceed to
survey progress since that point in time.

2. Gulf Stream Separation

As discussed by Dengg et al. [1996], various hypotheses
based on a number of physical mechanism were presented to
explain Gulf Stream separation in idealized circumstances.
When idealization and limiting assumptions were relaxed,
however, no single hypothesis seemed adequate to explain
the ocean modeling failure of the Stream to separate at the
observed location.

Even while refinement from 1� to 1/3� to 1/6� in the CME
model failed to solve the Gulf Stream separation problem,
producing instead a more pronounced anticyclonic station-
ary meander as the Stream overshot the observed separation
point of Cape Hatteras in which much of the Stream’s kinetic
energy was dissipated, Böning and Bryan [1996] insightfully
raised the likelihood that a modeling threshold was yet to
be crossed as the first internal Rossby radius came within
resolution.

This insight that the crossing of a threshold might be im-
minent was strongly suggested in the 1/6� study of Chao
et al. [1996], and then proven out in the North Atlantic
regional study of Smith et al. [2000]. The simulation was
based on the same Parallel Ocean Program (POP; Smith
et al. [1992], Dukowicz and Smith [1994]) used in the ear-
lier 0.28� global simulation of Maltrud et al. [1998], but
with an 0.1� mercator projection and 40 vertical levels span-
ning the Atlantic from approximately 20�S to somewhat be-
yond the North Atlantic Sill. Lateral boundary conditions
were provided through restoring of hydrography to clima-
tology within bu↵er zones, forcing was based on climatolog-
ical means for heat flux and salinity with daily reanalysis
winds. Within five or so years of spin-up kinetic energies
had largely equilibrated and the Gulf Stream was seen to
separate at the correct location of Cape Hatteras, without
evidence of an anticyclonic meander at its separation from
the coast, as shown in Plate 1 (taken from the newsletter
piece of Bryan and Smith [1998]). The early 1/12� isopy-
cnal model simulation of Paiva et al. [1999] also showed
Gulf Stream separation at Cape Hatteras, providing a base
state for the refinement of Chassignet and Garra↵o [2001].
The results of Paiva et al. [1999] provided support for the
importance of achieving a su�ciently inertial regime, as a
prerequisite for separation to occur at Cape Hatteras.

A zonal-average of the model’s first internal Rossby ra-
dius was shown in Figure 1 of Smith et al. [2000], repro-
duced here as our Figure 2. The act of ”resolving” the
Rossby radius is not as simple as maintaining a grid spac-
ing less than or equal to the first internal Rossby radius. A
span of several grid lengths is required if a numerical ocean

model is to be capable of representing a feature. The eddy
length scale is considerably larger than the Rossby radius,
as mentioned above in reference to the paper of Stammer
and Böning [1996], though it exhibits a linear dependence
on the Rossby radius. It was not clear then, a priori, that
0.1� would prove su�cient to cross this threshold. Later in-
vestigation showed 0.1� to be barely adequate, with strong
sensitivities to model configuration (Chassignet and Gar-
ra↵o [2001], Eden and Böning [2002], Maltrud and McClean
[2005], Bryan et al. [2007]), as discussed further in the next
section. It is important to note that all of these works solve
the same basic equations of fluid flow as in the now-classic
paper of Bryan [1969], even if questions of numerical imple-
mentation remain consequential.

3. Model Sensitivities

Sensitivity studies in a strongly eddying regime have most
often been conducted in a North Atlantic regional context,
with sensitivity to lateral dissipation most thoroughly ex-
plored.

Most of our discussion in this section addresses modeling
studies which include thermohaline as well as wind forcing,
with dozens of levels or layers in the vertical. A satisfac-
tory convergence study has yet to be attempted with such
a model, but has been performed with an isopycnal model
with up to six layers, without heat and fresh water forc-
ings: The study of Hurlburt and Hogan [2000] focussed on
the Gulf Stream region of the North Atlantic, and found
great improvement in the pathway of the Gulf Stream and
in the strength of abyssal flows when increasing resolution
from 1/8� to 1/16�. Further refinement to 1/32� brought
additional moderate improvement in these features. The
authors see evidence of convergence at 1/64� resolution, in
some regions, with more substantial dependence on resolu-
tion remaining evident in the region of the Grand Banks.

3.1. Sensitivity to Lateral Dissipation

Despite (or perhaps because of) the relatively thorough
consideration that sensitivity to lateral dissipation has re-
ceived, we address the question only briefly here. The topic
is taken up in greater depth in Hecht et al. [2008], in this
same volume, and is also touched on below, in section 5,
as the North Atlantic Current and its penetration into the
region of the Northwest Corner show particularly strong de-
pendence on model configuration.
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Figure 2. From Smith et al. [2000], showing the first
baroclinic Rossby radius, temporally and zonally aver-
aged from their 0.1� North Atlantic model, along with
grid spacings of the 0.1� model and the 0.28� model of
Maltrud et al. [1998].
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Hallberg, Ocean Modelling, (2013)

of spin-up from climatology. At the coarse resolution that is typical
of the ocean components of CMIP5 coupled climate models (nom-
inally 1! resolution), an ocean model only resolves the deformation
radius in deep water in a narrow band within a few degrees of the
equator; any important extratropical eddy effects will need to be
parameterized. At a much higher resolution, such as a 1/8! Merca-
tor grid, the deformation radius is resolved in the deep ocean in the
tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
to address this issue, but such models are not yet in widespread
use for global ocean climate modeling, and even then computa-
tional speed may dictate the use of models that do not resolve
mesoscale eddies everywhere.

In this paper, a series of numerical simulations of a variant of
the Phillips (1954) model of baroclinic instability are used to
examine the effects of resolution on a numerical model’s ability
to exhibit the net overturning circulation driven by mesoscale ed-
dies. The effects of a commonly used parameterization of eddy ef-
fect, both on the models’ explicitly resolved eddies and on the net
overturning, are examined. Based on these results, a simple pre-
scription is offered for the typical situation in global ocean mod-
els, where eddies are resolved in only part of the domain and in
that portion it is desired that the model be allowed to explicitly
simulate their effects, but in the remainder of the domain that
eddies be entirely parameterized. Specifically, the eddy diffusivi-
ties should be multiplied by a ‘‘resolution function’’, ranging from
0 to 1, of the ratio of the baroclinic deformation radius to the
model’s effective grid spacing, eD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2ð Þ=2

p
. The resolu-

tion function that works best for the cases presented here rapidly
makes a transition from 1 when this ratio is greater than a value
of about 2 (the exact value is not very important and can be cho-
sen to be higher) to 0 for larger values. In the idealized case pre-
sented here, this prescription is found to give a reasonable
representation of the net eddy-driven overturning over a wide
range of resolutions.

2. The test configuration and model

Phillips (1954) analyzed the baroclinic instability that arises in
a simple two-layered quasigeostrophic model of a geostrophically
sheared flow in a reentrant channel. This problem has the advan-
tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
@un
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Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1

and 9.69 & 10'5 s'1, following the common b-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
Mn ¼ p=q0 þ gz, in the two layers are given by a vertical integration
of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8! model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.

R. Hallberg / Ocean Modelling 72 (2013) 92–103 93
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Ocean Modelling Challenges


Workhorse (1o ≈ 100km) ocean models for climate research cannot reproduce 
the rich mesoscale eddy field observed in Nature…  

 

Gulf Stream SSH 




Ocean Modelling Challenges


èMixing associated with sub-gridscale turbulence must be parameterized

 



Ocean Modelling Challenges


“The choice of vertical coordinate system is the single most important aspect 
of an ocean model's design… Currently, there are three main vertical 
coordinates in use, none of which provide universal utility.”*
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Ocean Modelling Challenges



•  Long equilibration timescale è deep ocean will in general be 

characterized by drift.

  H2/Kv  = (4000 m)2  / (10-4 -> 10-5 m2/s) 


 
 
 
= O (5,000-50,000 years)





depths differ among basins. For example, while the
Atlantic Ocean gets saltier below 500-m depth by
.0.25 psu, the Pacific and Indian basins get saltier
below 2000-m depth by .0.05 psu and .0.15 psu,

respectively, by yr 1300. The fresh bias exceeds 1 psu in
the upper-ocean Indian basin.

We show the zonal-mean u and S CCSM4 minus
PHC2 climatology difference distributions in Fig. 4. The

FIG. 2. Horizontal-mean potential temperature difference time series for 1850 CONTROL minus
PHC2 observations: (a) global, (b) Pacific, (c) Indian, and (d) Atlantic Oceans. The contour intervals are
0.18, 0.28, 0.258, and 0.258C in (a),(b),(c),(d), respectively. The shaded regions indicate negative differ-
ences. The time series are based on annual-mean fields smoothed using a 10-yr running mean.
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CESM Ocean Model���
Parallel Ocean Program version 2 (POP2)


•  POP2 is a level- (z-) coordinate model developed at the Los 
Alamos National Laboratory (Smith et al., 2010).


•  Descendant of the Bryan-Cox-Semtner class of models.

•  Solves the 3-D primitive equations in general orthogonal 

coordinates with the hydrostatic and Boussinesq approximations.


•  A linearized, implicit free-surface formulation is used for the 
barotropic mode (Dukowicz & Smith, 1994).


•  Surface freshwater fluxes are treated as virtual salt fluxes, using 
a constant reference salinity è net ocean volume remains 
constant (but not ocean mass).




Useful Resources




The Parallel Ocean Program (POP)
Reference Manual
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Useful Resources




Model Equations

compressible fluid dynamics (Navier-Stokes)







Boussinesq equations








Primitive equations








Balance equations






Planetary geostrophic           Quasigeostrophic

     equations                        equations


*McWilliams, 1998, Ocean General Circulation Models, in 
Ocean Modeling and Parameterization, NATO Science 
Series.


Hierarchy of dynamical approximation




Model Equations

compressible fluid dynamics (Navier-Stokes)







Boussinesq equations








Primitive equations








Balance equations






Planetary geostrophic           Quasigeostrophic

     equations                        equations


*McWilliams, 1998, Ocean General Circulation Models, in 
Ocean Modeling and Parameterization, NATO Science 
Series.


 

ρ = ρo +δρ
δρ / ρ ≪1

δρ is very small in the ocean, so ignore 
δρ except in gravitational force and 
equation of state.



è Mass continuity equation becomes 



    

    (non-divergent flow)


∇3D ⋅v = 0



Model Equations

compressible fluid dynamics (Navier-Stokes)







Boussinesq equations








Primitive equations








Balance equations






Planetary geostrophic           Quasigeostrophic

     equations                        equations


*McWilliams, 1998, Ocean General Circulation Models, in 
Ocean Modeling and Parameterization, NATO Science 
Series.


 

ρ = ρo +δρ
δρ / ρ ≪1

Invoke hydrostatic approximation to 
simplify the vertical momentum equation 
(also, shallow-fluid approx)



è  vertical velocity (w) is computed 

diagnostically from continuity eqn., 
rather than prognostically


NOTE: There should be vertical 
acceleration when ocean becomes 
statically unstable (ρz>0), but w 
tendency has been excluded by the 
hydrostatic assumption. Therefore, 
vertical mixing must be parameterized 
by prognostic computation of vertical 
diffusivity (very large for an unstable 
column).


∂p
∂z

= −gρ



Model Equations

compressible fluid dynamics (Navier-Stokes)







Boussinesq equations








Primitive equations








Balance equations






Planetary geostrophic           Quasigeostrophic

     equations                        equations


7 equations in 7 unknowns:   

                

3 velocity components       

potential temperature          

salinity                                

density                                

pressure



Plus: 1 equation for each additional 
passive tracer (e.g. CFCs, Ideal Age)


*McWilliams, 1998, Ocean General Circulation Models, in 
Ocean Modeling and Parameterization, NATO Science 
Series.


 

ρ = ρo +δρ
δρ / ρ ≪1

∂p
∂z

= −gρ



3-D primitive equations in spherical polar coordinates 
with vertical z-coordinate for a thin, stratified fluid 
using hydrostatic & Boussinesq approx (Smith et al. 
2010):


Model Equations


a


z = r - a
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Continuity equation:
L(1) = 0 (2.8)

Hydrostatic equation:
∂p

∂z
= −ρg (2.9)

Equation of state:
ρ = ρ(Θ, S, p) → ρ(Θ, S, z) (2.10)

Tracer transport :
∂

∂t
ϕ+ L(ϕ) = DH(ϕ) + DV (ϕ) (2.11)

DH(ϕ) = AH∇2ϕ (2.12)

DV (ϕ) =
∂

∂z
κ
∂

∂z
ϕ, (2.13)

where λ, φ, z = r−a are longitude, latitude, and depth relative to mean sea
level r = a; g is the acceleration due to gravity, f = 2Ω sinφ is the Coriolis
parameter, and ρ

0
is the background density of seawater. The prognostic

variables in these equations are the eastward and northward velocity com-
ponents (u, v), the vertical velocity w, the pressure p, the density ρ, and
the potential temperature Θ and salinity S. In (2.11) ϕ represents Θ, S
or a passive tracer. The pressure dependence of the equation of state is
usually approximated to be a function of depth only (see Sec. 8.1). AH and
AM are the coefficients (here assumed to be spatially constant) for horizon-
tal diffusion and viscosity, respectively, and κ and µ are the corresponding
vertical mixing coefficients which typically depend on the local state and
mixing parameterization (see Chapter 7). The third terms on the left-hand
side in (2.1) and (2.2) are metric terms due to the convective derivatives
in du/dt acting on the unit vectors in the λ, φ directions, and the second
and third terms in brackets in (2.4) and (2.5) ensure that no stresses are
generated due to solid-body rotation (Williams, 1972). The forcing terms
due to wind stress and heat and fresh water fluxes are applied as surface
boundary conditions to the friction and diffusive terms FV and DV . The
bottom and lateral boundary conditions applied in POP (and in most other
Bryan-Cox models) are no-flux for tracers (zero tracer gradient normal to
boundaries) and no-slip for velocities (both components of velocity zero on
bottom and lateral boundaries).

To derive the primitive equations in general coordinates, consider the
transformation from Cartesian coordinates (ξ1, ξ2, ξ3 with origin at the
center of the Earth) to general horizontal coordinates (qx, qy, z), where

1


2


3


4


5

6,7




gx1v6: climate workhorse


   nominal 1°


gx3v7: testing, paleo apps

        nominal 3°


Equatorial refinement 
(0.3° / 0.9°) 

CESM Ocean Model Grids

Horizontal discretization is done in 
generalized spherical coordinates to 
avoid N. Pole singularity: 



“orthogonal curvilinear grid with 
displaced pole”




tripole mesh


CESM Ocean Model Grids


tx0.1: “eddy-resolving”


   nominal 0.1°




POP Spatial Discretization


•  Quadrilateral horizontal mesh (“Arakawa B-grid”)

•  Note relative positions of T(i,j,k); u,v(i,j,k); w(i,j,k)


Tracers (T, S, ρ, ψ)  @   “T-points”

Horizontal velocity (u,v)  @   “U-points”

Vertical velocity (w)

No-slip, no normal flow b.c.’s


x̂

ŷẑ
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be interpreted such that variables lie exactly at T- or U-cell centers and
faces, as appropriate.

The fundamental operators on C-grids have the same form as (2.18)-
(2.22). On B-grids the derivatives involve transverse averaging, and the
fundamental operators are given by:

∇ψ = x̂δxψ
y

+ ŷδyψ
x

(3.6)

∇ · u =
1

∆y
δx∆yux

y
+

1

∆x
δy∆xuy

x
(3.7)

ẑ ·∇× u =
1

∆y
δx∆yuy

y −
1

∆x
δy∆xux

x
(3.8)

∇ · G∇ψ =
1

∆y
δx
[
∆yGδxψ

y]y
+

1

∆x
δy
[
∆xGδyψ

x]x
. (3.9)

The gradient is located at U-points and the divergence, curl and Laplacian
are located at T-points. In the Laplacian operator G must also be defined
at U-points. The factors ∆x, ∆y inside the difference operators δx, δy are
located at U-points and are given by DXU, DYU, respectively, while the
factors 1/∆x, 1/∆y outside the difference operators, as well as similar factors
in the denominators of the difference operators δx, δy, are evaluated at T-
points. For example, the first term on the r.h.s. of the divergence (3.7) at
the T-point (i, j) is given by

0.5[DYUi,j(ux)i,j + DYUi,j−1(ux)i,j−1

−DYUi−1,j(ux)i−1,j − DYUi−1,j−1(ux)i−1,j−1]/TAREAi,j (3.10)

In POP (and in other Bryan-Cox models which use a B-grid formulation)
all viscous and diffusive terms are given in terms of an approximate C-grid
discretization in order to ensure they will damp checkerboard oscillations on
the scale of the grid spacing (see Secs. 3.3.2, 7.1, and 7.2).

3.3 Discrete Tracer Transport Equations

The discrete tracer transport equations are:

∂

∂t
(1 + ξ)ϕ+ LT (ϕ) = DH(ϕ) + DV (ϕ) + FW (ϕ) (3.11)

where LT is the advection operator in T-cells, and DH , DV are the horizontal
and vertical diffusion operators, respectively. The factor (1+ξ) is associated
with the change in volume of the surface layer due to undulations of the free

CHAPTER 3. SPATIAL DISCRETIZATION 15

(Sec. 8.4). Vertical velocities wU along the rims in the stair-step topography
may also be nonzero (see the discussion of velocity boundary conditions in
Sec. 3.4.1). The topography is determined by the 2-D integer field KMTi,j

which gives the number of open ocean points in each vertical column of T-
cells. The KMT field is usually generated offline and read in from a file in
the code. Thus 0 ≤ KMT ≤ km, and KMT = 0 indicates a surface land
point. In some situations the ocean depth in a column of U-points is needed,
and this is defined by the field KMUi,j , which is just the minimum of the
four surrounding values of KMT:

KMUi,j = min{KMTi,j,KMTi−1,j,KMTi,j−1,KMTi−1,j−1} (3.2)

The depths of columns of ocean T-points and U-points are given, respec-
tively, by:

HT = zw(KMT) ,

HU = zw(KMU) . (3.3)

With partial bottom cells the depth of the deepest ocean cell in each column
has variable thickness, and the above formulas are modified accordingly (see
Sec. 5.2.2).

3.2 Finite-difference operators

The exact finite-difference versions of the differential operators can be eas-
ily derived for the various types of staggered horizontal grids A,B,C,D,E
(Arakawa and Lamb, 1977) given only the forms of the fundamental opera-
tors: divergence, gradient, and curl for that type of mesh. POP employs a
B-grid (scalars at cell centers, vectors at cell corners) while some OGCM’s
use a C-grid (scalars at cell centers, vector components normal to cell faces).
We will use standard notation (Semtner, 1986) for finite-difference deriva-
tives and averages:

δxψ = [ψ (x + ∆x/2) − ψ (x − ∆x/2)]
/
∆x (3.4)

ψ
x

= [ψ (x + ∆x/2) + ψ (x − ∆x/2)]
/
2 , (3.5)

with similar definitions for differences and averages in the y and z directions.
These formulas strictly apply for uniform grid spacing; where, for example,
if ψ is a tracer located at T-points, then ψ (x + ∆x/2) is located on the east
face of a T-cell. For nonuniform grid spacing, the above definitions should

•  Finite difference numerics :

   (see POP Ref Manual for details)
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T 

T T T T 

T T T T 

T T 

T T T T T 

U 

U 

U U U U 

Land Land 

Top  View 

 i,j 

N 

E 

T=tracer grid, U=velocity grid 

• At least 2 adjacent active ocean T-cells 
are required for flow through channels 

POP Spatial Discretization
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Ocean bottom 

T=tracer grid, U=velocity grid 

POP Spatial Discretization


x 



40-level CCSM3 

60-level CCSM4 

CCSM3 

CCSM4 

POP Vertical Discretization


Δz(z)


•  Fixed z-levels, with non-uniform Δz

•  Enhanced vertical resolution in surface diabatic layer (Δz=10m at sfc)

•  60-lvl for gx1v6/gx3v7;  62-lvl for tx0.1




Slide 35 

MPAS-Ocean model grids (CESM3.0?)


Figures courtesy of Mark 
Petersen (LANL)



Reference: Ringler et al, 
2014, A multiresolution 
approach to global ocean 
modelling, Ocean 
Modelling, in revision.


Horizontal: 

unstructured

quasi-uniform or variable 
resolution


Voronoi Tesselations

4, 5, or 6-sided cells



Vertical: Arbitrary 
Lagrangian-Eulerian 
(ALE): z-level, z-star, 
sigma, isopycnal




•  Momentum: centered differencing (2nd order)


•  Tracers: upwind3 scheme (3rd order)

•  Operator stencil is a function of v=(u,v,w) 

•  Complex form (see POP Ref Manual)

•  Stronger conservation & monotonicity requirements

•  Other alternatives for tracers (e.g., flux-limited Lax-Wendroff 

scheme), but more expensive 
 

POP numerics in a nutshell


Finite difference advection 
 

advection operator in 
analytic form 
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where Qϕ is the surface flux of tracer ϕ (e.g., heat flux for temperature
and equivalent salt flux associated with freshwater flux for salinity). The
modifications to this discretization when partial bottom cells are used is
described in Sec. 5.2.2. The diffusive term may either be evaluated explicitly
or implicitly. The implicit treatment is described in Sec. 4.2.2. With explicit
mixing, a convective adjustment routine may also be used to more efficiently
mix tracers when the column is unstable (see Sec. 7.3.1). Various subgrid-
scale parameterizations for the vertical diffusivity are discussed in Sec. 7.3.

3.4 Discrete Momentum Equations.

The momentum equations discretized on the B-grid are given by:

∂

∂t
ux + LU (ux) + uxuyky − u2

ykx − fuy = −
1

ρ
0

δxpy + FHx(ux, uy) + FV (ux)

(3.21)
∂

∂t
uy +LU (uy) + uxuykx − u2

xky + fux = −
1

ρ
0

δyp
x +FHy(uy, ux) +FV (uy)

(3.22)
In these equations no account has been taken of the change in volume of the
surface layer due to undulations of the free surface. Therefore, no terms in-
volving ξ appear as in the tracer transport equation (3.11). The justification
for this is that the global mean momentum, unlike the global mean tracers, is
not conserved in the absence of forcing, so there is less motivation to correct
for momentum nonconservation due to surface height fluctuations. Further-
more, the error introduced is typically small compared to the uncertainty in
the applied wind stress.
Note: Currently the code is in cgs units and it is assumed that ρ

0
= 1.0g

cm−3, so it never explicitly appears. If the Boussinesq correction (Sec. 8.1.1)
is used, then this factor is already taken into account, because the factor
r(p) in (8.7) is normalized such that the pressure gradient should be divided
by ρ

0
= 1.0.

3.4.1 Momentum Advection

The nonlinear momentum advection term is discretized as:

LU (α) =
1

∆y
δx
[
(∆yux

y
)
xy
αx
]
+

1

∆x
δy
[
(∆xuy

x
)
xy
αy
]
+ δz(w

Uαz) . (3.23)

This is a second-order centered advection scheme and is currently the only
option available in POP for momentum advection. It has the property



•  3-time-level modified leapfrog scheme  (2nd order)

•  Occasional averaging timestep to suppress the computational mode 

associated with decoupled even/odd timestep solutions

•  For tracer X: 
 

POP numerics in a nutshell

Time Discretization 
 

 Xt+1 – Xt-1


   2Δt


= Lt (Xt) + DH(Xt-1) + Dv
t(Xt+1)  


t-1 t+1 

t t+2 

(Implicit vertical mixing)




POP numerics in a nutshell


•  U = <U> + U’, where <U> is depth-average (barotropic mode)

•  Explicitly resolving fast barotropic gravity waves (√gH ~200 m/s) would 

place severe limitations on model timestep due to Courant-Friedrichs-Lewy 
(CFL) stability condition: 
u(Δt/Δx) ≤ 1


•  Therefore, barotropic gravity waves are filtered out by solving for <U> as a 
separate 2D system using implicit free-surface formulation with barotropic 
timestep = (much longer) baroclinic timestep.


•  Explicitly solve for U’ from momentum eqns without surface pressure 
gradient




è Δt ≈ 1 hour in 1o POP


Time Discretization  





Barotropic/Baroclinic split 
 

Refer to POP reference manual for further details on 
numerics ! 
 



POP surface forcing


�  Ocean model forcing = fluxes of momentum, heat, and freshwater, (… and other 
tracers) applied as surface boundary conditions to vertical mixing terms:




 

 

 

u,v:




 

 

tracers:




 

 

 

momentum flux




 

 

 

tracer flux




 

 

 

�  “Flux boundary conditions” at the surface (z=0):
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è  Primitive equation surface b.c.’s require specification of:

-  Wind stress vector :  

-  Net heat flux:

-  Net freshwater flux:    




 

 

 

 
!
τ

Qnet =QS +QL +QE +QH +QP +Qoi

Fnet = P + E + R + Foi

(see Barnier, 1998)




POP surface forcing


�  Bulk formulae parameterize the turbulent fluxes in terms of the near surface 
atmospheric state (U, q, θ) with a feedback of the surface ocean state (Uo, SST) 
onto the fluxes:




 

 

 

temperature h, specific humidity q, and density q) and the

ocean state (SST and ocean surface current, Uo
~ ):

s~as ¼ qCDjDU~jDU~ ð3aÞ

E ¼ qCEðq$ qsatðSSTÞÞjDU~j ð3bÞ

QE ¼ KvE ð3cÞ

QH ¼ qcpCHðh$ SSTÞjDU~j; ð3dÞ

where DU~ ¼ U~ $ Uo
~ ; cp % 1;000:5 J/kg per !C, is the

specific heat of air, and Kv & 2.5 9 106 J/kg, is the latent

heat of vaporization. The air at the ocean surface is

assumed to be saturated with its specific humidity
approximated by:

qsatðSSTÞ ¼ 0:98q$1640; 380ðkg=m3Þeð$5107:4K=SSTÞ; ð4Þ

where the factor 0.98 applies only over sea-water. The

complete methodology, including how the transfer coeffi-

cients for drag CD, sensible heat transfer CH, and
evaporation CE are shifted from formulations of their

neutral stability values at 10 m height, is detailed in LY04

and also in Large (2006). The formulation of these neutral,
10 m coefficients is documented in the ‘‘Appendix’’.

The radiative flux calculations reduce to functions of

SST, the solar insolation QI, incident on the ocean surface,
the solar albedo, a, and the downwelling longwave flux

from the atmosphere, QA. The net solar flux is given by

QS ¼ QIð1$ aÞ: ð5Þ

The blackbody radiation from the ocean occurs at longer

wavelengths and is given by er(SST)4, where r = 5.67
9 10-8 W/m2 per K4 is the Stefan–Boltzmann constant

and e is the surface emissivity. The net longwave flux

becomes

QL ¼ QA $ rðSSTÞ4; ð6Þ

where the emissivity is taken to be 1.0 to account for the

small fraction of QA that is reflected (Lind and Katsaros
1986).

3 Data sets and bias reductions

The air–sea flux calculations require the near surface

atmospheric state fU~; h; q; qg; downwelling radiation {QI,

QA}, precipitation, the ocean state fSST;Uo
~ g and the ice

state given by fo. Characteristics of various data sets are

given in Table 1. They allow all the air–sea fluxes to be

computed through 2006; the turbulent fluxes fs~as;E;QE;
QHg from 1948, the radiative fluxes {QS, QL} after 1983

and precipitation from 1979. Therefore, the total air–sea

heat foQas, and freshwater, foFas, fluxes are available only
after 1983 and from 1979, respectively.

The monthly Hadley Centre sea Ice and SST data set

version 1 (HadISST1) is described and evaluated by Ray-
ner et al. (2003). It includes historical SSTs reconstructed

from ship observations beginning in 1871 (Folland et al.

2001). It has been merged with version 2 of the National
Oceanic and Atmospheric Administration (NOAA) weekly

optimum interpolation (OI.v2) analysis (Reynolds et al.

2002) and made compatible with historical sea-ice distri-
butions by Hurrell et al. (2008). Hereafter, this latter

product (Hadley-OI) is used exclusively.
Daily fractional sea-ice concentration, ci = 1 - fo, is

estimated from satellite microwave measurements (Comiso

1999) and provided by the National Snow and Ice Data
Center (NSIDC). The climatological (1979–2006) distri-

butions of mean concentration are shown for the Arctic in

Fig. 1a and the Antarctic in Fig. 1b. Where the mean is
zero, ice is not observed and fo = 1 in (1). In the central

Arctic (Fig. 1a) and east of the Antarctic Peninsula

(Fig. 1b), the air–sea forcing is greatly reduced by mean
ci[ 0.8. Moving equatorward, there is generally a decrease

in this effect to the limits of sea-ice extent at about 47!N and

55!S, but there is an offshore increase in the Ross Sea,
because of strong katabatic winds from Antarctica.

3.1 The atmospheric state

The atmospheric state is based on NCEP reanalysis from

1949 to 2006, but these data have known biases (Smith

et al. 2001) and are, therefore, adjusted based on compari-
sons with observations. The surface air temperatures are

changed only at high latitudes. Around Antarctica a low

temperature limit is set, based on weather station and
drifting buoy data (F.O. Bryan, personal communication,

2002). This limit and the zonally averaged increases in

NCEP h in a typical year (1990) are shown as functions of
latitude and day of the year in LY04. The coldest limit is

-34!C at 77!S in July and the biggest increases are about

12!C during March and April from 75!S to 77!S. Over the
Arctic cap north of 70!N, the polar exchange at the sea

surface (POLES) air temperatures (Rigor et al. 2000) agree

in the climatological mean (-13.83!C vs. -13.93!C for
NCEP), but suggest a reduction of NCEP air temperature in

spring and summer, and an increase in fall and winter. The

12 monthly adjustments (January–December) are 0.49,
0.06, -0.73, -0.89, -0.77, -1.02, -1.99, -0.91, 1.72,

2.30, 1.81 and 1.06!C.

QSCAT satellite scatterometer wind vectors, (UQ, VQ),
from the method of Chin et al. (1998) are suitably flagged

for rain and best represent a spatial average of DU~: Their

accuracy relative to time averaged surface buoy winds is
about 1 m/s in speed and 20! in direction for winds less

than 20 m/s (Ebuchi et al. 2002; Freilich and Vanhoff

2006). Therefore, comparisons with coincident 6-hourly
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(see Large & Yeager, 2009)




POP surface forcing


�  Fully coupled mode (B compset): active atmospheric model


�  Forced ocean (C compset) or ocean_sea-ice (G compset): data atmosphere

-  Generally use CORE atmospheric state fields for surface b.c.’s

-  http://data1.gfdl.noaa.gov/nomads/forms/core.html

-  Interannual (1948-2009) as well as Normal Year Forcing (NYF) are available


�  Default is for POP to “couple” to surface b.c.’s once per day

�  Useful References:


Barnier, 1998: Forcing the Ocean, in Ocean Modeling and Parameterization, NATO Science 

Series.


Large & Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: the 

data sets and climatologies, NCAR Tech Note TN-460.


Large & Yeager, 2009: The global climatology of an interannually varying air–sea flux data 

set, Clim Dyn, 33, 341-364, doi:10.1007/s00382-008-0441-3


   

    Quality of POP model solution is strongly tied to quality of surface b.c.’s !
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24h	  Ocean	  

Atmosphere	  

Coupler	   Land	  
Sea-‐ice	  
Land-‐ice	  

è Need to parameterize the diurnal cycle of (shortwave) radiative 
heat flux (ie., night & day).  This is done with a zenith-angle 
dependent SW(lat, lon, hour, day of year) heat flux 
parameterization.


POP diurnal cycle




Diurnal 

è The SW diurnal cycle results in dramatically improved equatorial 
SST 


POP diurnal cycle




coupled 
CCSM4


coupled

CCSM3


Forced 
ocean-ice

CCSM4 




First, a 2! atmosphere and land, 1! ocean and sea ice

1870 Control run was integrated for 260 years, which had a
good top of the atmosphere balance of -0.12 W/m2. The

2! run was branched from year 123 of the Control run, and

was integrated from 1870 to 2030. The greenhouse gas
forcing was taken from observations between 1870 and

2000, and then followed the Special Report on Emissions

Scenarios A1B future scenario. Additional forcings are the
levels of dust, sea salt, and carbonaceous and sulphate

aerosols. These aerosol levels are based on a historical

reconstruction run using the CCSM chemistry component,
and then projected forward for the period 2000–2030. The

solar forcing was held constant at 1,365 W/m2, and no

volcanic forcing was applied to the run. The initial con-
dition for the 0.5! run was taken from 1 January 1980 of

the 2! run. The atmosphere and land fields were inter-

polated onto the 0.5! grid, and the ocean and sea ice fields

were used without modification. The 0.5! run was integrated

from 1980 to 2030, and was forced in exactly the same way
as the 2! run. The factor of 16 times more grid points in the

atmosphere and land components, but the same number in

the ocean and sea ice components, means the 0.5! run takes
about 12 times the computational resource of the 2! run.

3 Comparison of mean climates

This section will compare several aspects of the 2! and 0.5!
run climates averaged between the beginning of 1985 and

2000, and observations representing the end of the twentieth

century. The rationale for averaging between 1985 and 2000
is the following. The 0.5! run will obviously have a period of

adjustment to its own climatology from that of the 2! run.

Figure 2 shows the globally averaged ocean temperature

(a)

(b)

Fig. 3 Difference between the
SST in (a) 2! run, and (b) 0.5!
run and observations (Levitus
et al. 1998; Steele et al. 2001)
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between the surface and 203 m depth between 1980 and
2000 from the two runs. It shows that most of the adjustment

in the upper 200 m of the ocean occurs in the first 5 years,

and the adjustment to the new 0.5! climatology is almost
complete after 10 years. Adjustment to the new Arctic Ocean

sea ice thickness distribution in the 0.5! run also takes

5–10 years, and the adjustment in the atmosphere and land
components is faster than this. Thus, the choice was made to

start the averaging in 1985, rather than in 1990, in order to
have a longer averaging period, given that most of the upper

ocean adjustment had occurred by then.

3.1 The upper ocean simulation

Figure 3 shows the difference between the SST in the two
runs and a climatology from (Levitus et al. 1998) data and

(a) (b)

(d)(c)

Fig. 4 a Wind stress magnitude
(N m-2) and direction.
b Vertical velocity at 100 m
depth 10-6 m/s from the 2! run
along the west coast of South
America. c, d The same from
the 0.5! run
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Gent et al., Clim Dyn, 2010
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•  CORE-forced ocean-ice hindcast simulation with 1o POP yields good 
reproduction of observed SST variability over late 20th century 

 



subsurface observations, and only a weak restoring of
model surface salinity to observed climatology is em-
ployed. The CORE forcing dataset, which has been
adopted by the CLIVAR Working Group on Ocean
Model Development for model intercomparisons, im-
parts realistic surface variability on a range of relevant
time scales (Large and Yeager 2004; Large and Yeager
2009), and the resulting simulated upper-ocean vari-
ability shows good agreement with a variety of in situ
observations (e.g., North Atlantic upper-ocean heat con-
tent in Fig. 1). The 240-yr CORE-IA integration is spun up
through four consecutive 60-yr cycles of 1948–2007 forcing.

The ocean and sea ice models in DP experiments are
initialized with 1 January restart files for a particular year
from the last (fourth) cycle of the CORE-IA simulation.
No attempt is made to initialize the atmosphere and land
models to historical states. Instead, the initial conditions for
these component models are taken from corresponding

years of a six-member ensemble of twentieth-century
(20C) runs. Specifically, the 10-member DP ensembles
are generated by randomly selecting atmosphere and
land initial conditions from different 20C runs and/or
from different days in the month of January. The reader
is referred to Gent et al. (2011) and Meehl et al. (2012)
for complete descriptions of the CCSM4 twentieth- and
twenty-first-century control simulations and forcing de-
tails. We refer to all coupled experiments initialized from
CORE-IA, whether of past or future time periods, as
decadal prediction experiments.

The DP experiments differ from 20C runs (and their
future scenario extensions) in terms of initialization
procedure and length of integration but are otherwise
subject to the same external forcings of solar irradiance,
greenhouse gases, aerosols, and volcanic activity. The
forcings used are identical to those used in 20C experi-
ments through 2005, and thereafter, the RCP 4.5 future

FIG. 1. Pentadal-mean heat content anomalies expressed as the 275-m depth-averaged temperature anomaly relative to 1957–90 cli-
matology from (a)–(d) Ishii and Kimoto (2009), (e)–(h) Levitus et al. (2009), and (i)–(l) CORE-IA. The boxes in each panel demarcate the
SPG (508–108W, 508–608N) and STG (708–308W, 328–428N) regions.
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Yeager et al., 2014, in prep.




 For even more info…

Books:



•  Chassignet & Verron (Eds.), 1998: Ocean Modeling and Parameterization, 

Proceedings of the NATO Advanced Study Institute, NATO Science 
Series C, vol. 516, 451pp.


•  Haidvogel & Beckmann, 1999: Numerical Ocean Circulation Modelling, 
Imperial College Press, 318 pp.


•  Griffies, 2004: Fundamentals of Ocean Climate Models, Princeton 
University Press, 518 pp.


Review Papers:


•  Griffies et al, 2000: Developments in ocean climate modelling, Ocean 
Modelling, 2, 123-192.




•  Griffies et al., 2010, Problems and prospects in large-scale ocean 

circulation models, Ocean Obs ‘09 Community White Paper, doi:10.5270/
OceanObs09.cwp.38.






oC 

mean= 0.63oC 

rms= 1.44oC 

mean= -0.01oC  

rms= 1.07oC 

Obs: Levitus et al. (1998), 
Steele et al. (2001) 

1° atmosphere 

2° atmosphere 



http://www.cesm.ucar.edu/models/cesm1.2/pop2/ 

CESM Webpage for POP 

�  POP2 User Guide  

�  Ocean Ecosystem Model User Guide 

�  POP Reference Manual  

�  Ocean Ecosystem Reference Manual 



Friday’s breakout session 

�  Create and run a low-resolution ice-ocean 

�  Change the namelists  
�  turn off  the overflow parameterization 

�  change snow and sea ice albedo 

�  Advanced exercises: changing wind stress forcing 
within the source code 

�  Data Analysis using nco commands and ncview 

 

Sea-ice, Ocean, and Land-ice 



Central Advection Discretization 

ADVi,j,k = − (uE T∗E − uW T∗W )/DXT − (vN T∗N − vS T∗S)/DYT− (wk T∗T − wk+1 T∗B )/dz 

uE(i) = (ui,jDYUi,j + ui,j−1DYUi,j−1)/(2DXTi,j) 
uW(i) = uE(i − 1) 
vN(j) = (vi,jDXUi,j + vi−1,jDXUi−1,j)/(2DXTi,j) 
vS(j) = (vi,j-1DXUi,j + vi−1,j−1DXUi−1,j)/(2DXT) 
 
T∗E = ½ * (Ti+1,j + Ti,j) 



Baroclinic & Barotropic Flow 

•  Issue:  Courant-Friedrichs-Lewy (CFL) 
stability condition associated with fast 
surface gravity waves. 
•  u(Δt/Δx) ≤ 1 

•  Barotropic mode √gH ~200 m/s 
•  Split flow into depth averaged barotropic 

(<U>) plus vertically varying baroclinic (U’) 
•  Fast moving gravity waves are filtered out, 

but that’s okay because they don’t impact 
climate 



Barotropic and Baroclinic Flow 

U = <U> + U’ 
 

•  <U>: Implicit, linearized free-surface formulation 
obtained by combining the vertically integrated 
momentum and continuity equations  

 
•  U’: use a leapfrog time stepping to solve 

 Xt+1 – Xt-1 
    2Δt 

 

•  Occasional time averaging to eliminate the split mode 

= Dt-1 + ADVt + SRCt,t-1  

t-1 t+1 

t 


