

CLM5.0 Tutorial: Running CLM

Danica Lombardozzi, Keith Oleson, Erik Kluzek, Ahmed Tawfik, Marysa Lague

NCAR is sponsored by the National Science Foundation

Outline

COLOUR STOR

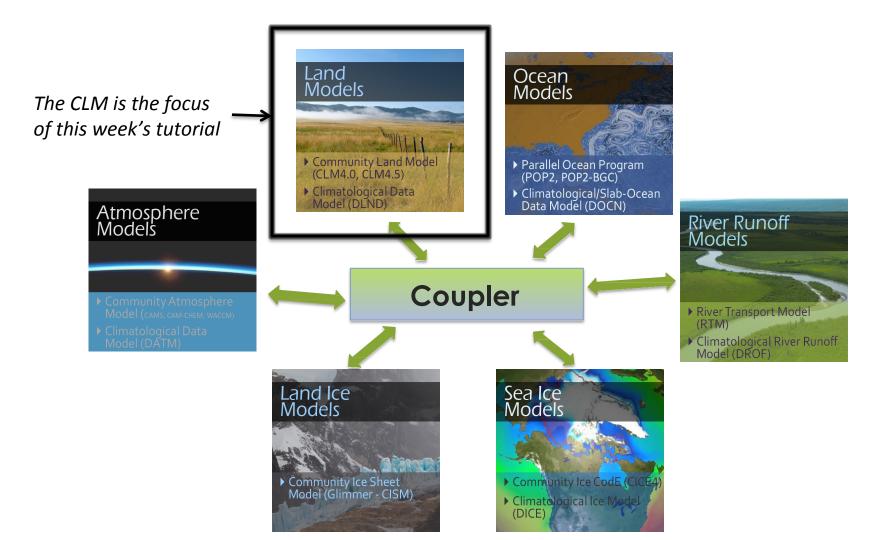
• CESM at a glance

- 1) The CESM framework
- 2) Finding information about CLM & CESM
- 3) Overview of CLM (and CESM) directory structure

Basic workflow

- 1) Create a new case
- 2) Invoke case_setup
- 3) Build the executable
- 4) Run and output data

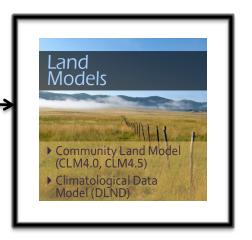
Changing configuration options


- 1) Component Sets
- 2) ENV files (env_[command])
- 3) Namelist files (user_nl_[model])

Getting help

• Appendix

The CESM Framework


The Community Earth System Model (CESM) is a set of models that can be run independently or together to simulate the Earth global climate.

The **CESM** Framework

The Community Earth System Model (CESM) is a set of models that can be run independently or together to simulate the Earth global climate.

The CLM is the focus of this week's tutorial

The CLM (and the CESM) can be run through a set of scripts provided with the model.

The first part of this practical session is a quick start to the CLM workflow (out-of-the-box)

<u>out of the box</u> = works immediately after installation without any modification

CESM 1.2 Web Page

http://www.cesm.ucar.edu/models/cesm2.0/ FILL ST MALL ST ST ST

Home » CESM Models » CESM2.0 Series Public Release

** DRAFT ** CESM2.0 SERIES PUBLIC RELEASE

Release Notes

Scientific validation

Post processing

Tools

Model

Documentation

ABOUT THIS RELEASE SERIES **CESM2.0 SERIES RELEASE NOTES** SCIENTIFIC VALIDATION Scientific validation consists of a multi-decadal model run of the given component set at the target resolution, followed by scientific review of the model output diagnostics. All scientifically supported component sets are also accompanied by diagnostic and model output data.

What version of the model should I use? For a scientifically supported target component set and resolution, please refer to the Scientifically Validated Configurations for that target configuration.

DIAGNOSTIC PACKAGES AND NAMING CONVENTIONS

- Post Processing Utilities
- Model File Naming Conventions
- Experiment Case Naming Conventions

MODEL DOCUMENTATION

CESM2.0

- User's Guide
 - Machines Resolutions
 - Component Sets
 - Model Component Namelists
 - \$CASEROOT xml files

Component Models

- Atmosphere Models
- Land Models
- Sea Ice Models
- Ocean Models
- Land Ice Models
- River Models
- Coupler

EXTERNAL LIBRARY DOCUMENTATION

- Parallel I/O Library (PIO)
- Model Coupling Toolkit (MCT)
- Earth System Modeling Framework (ESMF)

Model Input Data

MODEL INPUT DATA

The input data necessary to run all supported component sets is made available from a public Subversion input data repository. Note that the input data repository has much more data in it than you need to run CESM2.0 ---- DO NOT attempt to svn checkout the whole input data repository. The CESM2.0 User's Guide explains how to obtain the subset of input data required for your needs.

Timing & Load **Balance**

PERFORMANCE AND LOAD BALANCING DATA

The development and testing of CESM2.0 required several iterations in the CESM1.Y series. The following timing tables for each model revision are available:

- CESM1.3 Timing Table CESM1.5 Timing Table
- CESM2.0 Timing Table

CESM PROJECT

The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.

CESM is sponsored by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE). Administration of the CESM is maintained by the Climate and Global Dynamics Laboratory (CGD) at the National Center for Atmospheric Research (NCAR).

MODEL SOURCE CODE

Copyright and Terms of Use All CESM source code is subject to the following Copyright Notice and Disclaimer.

Acquiring the Release Code

The source code for CESM releases is distributed through a public Subversion code repository. This code can be checked out using Subversion client software, such as the command tool svn, or simply view the latest version with a web browser.

A short registration is required to access the repository. After registering, you will receive an email containing a user name and password that is necessary to gain access to the repository.

Acquistion of the code is more fully described in the most recent version of the CESM1.2 User's Guide.

REPORTING A PROBLEM

If you have any problems, please first read the User's Guide including the sections on FAQs and Use Cases. Please also refer to the CESM tin Board, which is in place to facilitate communication within the CESM community. Finally, please also refer to the Release Notes entries that are provided with every release and release update. If questions or problems still exist, then please send an email to cesm-help@cgd.ucar.edu. Support questions will be answered as resources are available.

CESM SUPPORT POLICY

Background and Sponsors

How to acquire the code

Reporting problems Getting Help

CLM Web Page

http://www.cesm.ucar.edu/models/cesm1.2/clm

Home » CESM Models » CESM1.2 Public Release » CESM1.2: CLM Documentation

CESM1.2: CLM DOCUMENTATION

INTRODUCTION

The Community Land Model versions 4.0 and 4.5 in CESM1.2.0 are the latest in a series of land models developed through the CESM project. More information on the CLM project and access to previous CLM model versions and documentation can be found via the CLM Web Page.

Model Documentation

Model Diagnostics

Post-processing Tools

DOCUMENTATION

- User's Guide for CLM4.5 and CLM4.0 in CESM1.2.0 [html] (Last update: Jul/20/2013)
- Technical Description for CLM4.5 (Last update: Aug/ 1/2013)
- Technical Description for CLM4.0, CLM4.0 Urban Model, CLM4.0 Crop and Irrigation Model
- Explanation of supported configurations in CLM4.5 and CLM4 in CESM1.2
- What's new in CLM in CESM1.2 (CLM4.5 release) Science, CESM1.2 (CLM4.5 release) Software, CESM1.1.1, CESM1.1.0, CESM1.0.5, CESM1.0.4, CESM1.0.3, CESM1.0.2, CESM1.0.1, CESM1.0, CCSM4.0 (CLM4.0 release).
- Known bugs in CLM in CESM1.2.0, CESM1.1.0, CESM1.0.4, CESM1.0.3, CESM1.0.2, CESM1.0.1, CESM1.0.
- Known limitations in CLM in CESM1.2.0, CESM1.1.0.

MODEL OUTPUT AND OFFLINE FORCING DATA AND DIAGNOSTIC PLOTS

- CLM4.0 and CLM4.5 offline control simulations: Diagnostic plots
- CLM4.0 and CLM4.5 offline control simulations (links need to be updated and data posted to ESG)): Model output data
- CLM4.0 and CLM4.5 offline control simulations (links need to be updated and data posted to ESG): Model forcing data
- CLM4.0 and CLM4.5 offline historical and RCP simulations: CCSM4 coupler history forcing data

CLM POST-PROCESSING AND ANALYSIS UTILITIES

- CLM Diagnostic Package: Introduction, Code (via svn repository, registration required), and User's Guide Multivariate visual analytics tool: EDEN (Exploratory Data analysis ENvironment)
 - Helps reveal associations among variables for guided analysis (beta version, comments to Chad Steed)

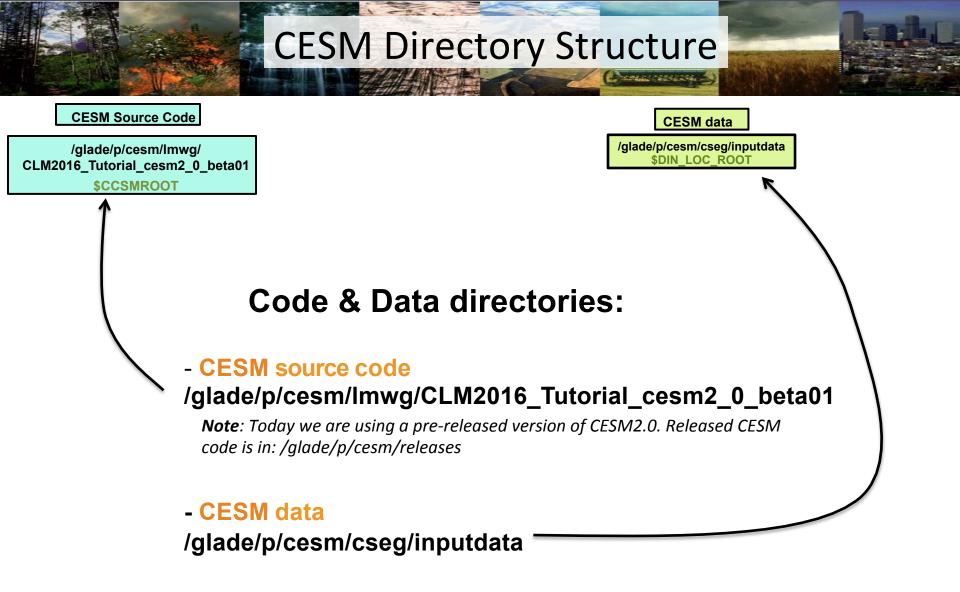
MODEL DESIGN AND DEVELOPMENT

- Request Form for Developer Access (active close collaborators only)
- CLM Developers' Guidelines
- CLM4/CESM1.2.0 Code Reference Guide

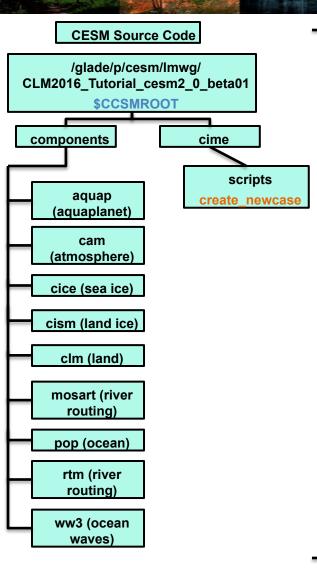
REFERENCES

Bibliography of papers utilizing and/or developing CLM (Last update: Jan/29/2016)

CI M4 5

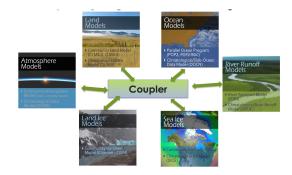

· Oleson, K.W., D.M. Lawrence, G.B. Bonan, B. Drewniak, M. Huang, C.D. Koven, S. Levis, F. Li, W.J. Riley, Z.M. Subin, S.C. Swenson, P.E. Thornton, A. Bozbiyik, R. Fisher, E. Kluzek, J.-F. Lamarque, P.J. Lawrence, L.R. Leung, W. Lipscomb, S. Muszala, D.M. Ricciuto, W. Sacks, Y. Sun, J. Tang, Z.-L. Yang, 2013: Technical Description of version 4.5 of the Community Land Model (CLM). Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp, DOI: 10.5065/D6RR1W7M.

CRUNCEP Forcing (standard for CLM4.5, but can also be used for CLM4.0


 Piao et. al. 2012: The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 9, 3571-3586. doi:10.5194/bg-9-3571-2012. (CRUNCEP forcing)

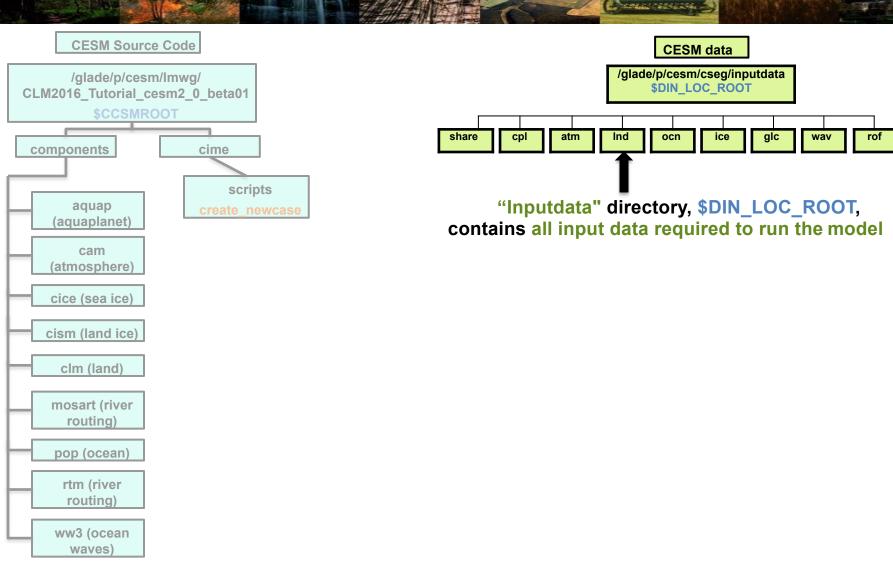
CLM4.0

- Lawrence, D.M., K.W. Oleson, M.G. Flanner, P.E. Thornton, S.C. Swenson, P.J. Lawrence, X. Zeng, Z.-L. Yang, S. Levis, K. Sakaguchi, G.B. Bonan, and A.G. Slater, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Sys., 3, DOI: 10.1029/2011MS000045.
- Oleson, K.W., D.M. Lawrence, G.B. Bonan, M.G. Flanner, E. Kluzek, P.J. Lawrence, S. Levis, S.C. Swenson, P.E. Thornton, A. Dai, M. Decker, R. Dickinson, J. Feddema, C.L. Heald, F. Hoffman, J.-F. Lamarque, N. Mahowald, G.-Y. Niu, T. Qian, J. Randerson, S. Running, K. Sakaguchi, A. Slater, R. Stockli, A. Wang, Z.-L. Yang, Xi. Zeng, and Xu. Zeng, 2010: Technical Description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257 pp.


CESM Directory Structure

	CESM data	
/glade/p/cesm/cseg/inputdata \$DIN_LOC_ROOT		

Source code has 2 subdirectories:


- components: contains the code for every model component

- cime: contains the scripts you need to run CESM

Note: the subdirectories of "components" will change based on whether you are using a CESM code base or a CLM code base. Shown here is the structure for the CESM model base. For CLM, you will only find "clm", "mosart" or "rtm", and "cism" subdirectories. You can use either code base to run CLM-only simulations, which are defined by the component set you choose. More information on component sets is presented later.

CESM Directory Structure

Outline

CREAT CONTRACTOR

• CESM at a glance

- 1) The CESM framework
- 2) Finding information about CLM & CESM
- 3) Overview of CLM (and CESM) directory structure

Basic workflow

- 1) Create a new case
- 2) Invoke case_setup
- 3) Build the executable
- 4) Run and output data

Changing configuration options

- 1) Component Sets
- 2) ENV files (env_[command])
- 3) Namelist files (user_nl_[model])

Getting help

• Appendix

Work Flow: Super Quick Start

CESM can be run in 4 steps:

(1) create a new case

This step sets up a new simulation. It is the most complicated of these four steps because it involves making choices to set up the model configuration

(2) invoke case.setup

This step configures the model so that it can compile

(3) build the executable

This step compiles the model

(4) submit your run to the batch queue

This step submits the model simulation to the supercomputer queue

Here, you will learn to use these four steps to set up and run a simulation. After completing this section, you will learn how to make basic modifications to the model configuration.

First: Logging in to Yellowstone

- **1. Open a secure shell window**: Terminal, Cygwin, PuTTY, Mobaxterm
- 2. Log on using your yubikey: ssh -Y <username>@yellowstone.ucar.edu

Your screen displays a response: Token_response:

3. Enter your PIN number (do not hit enter), then touch the yubikey button. This will insert a new one-time password and a return

Note: the yubikey is activated by the warmth of your finger, not the pressure of pushing the button

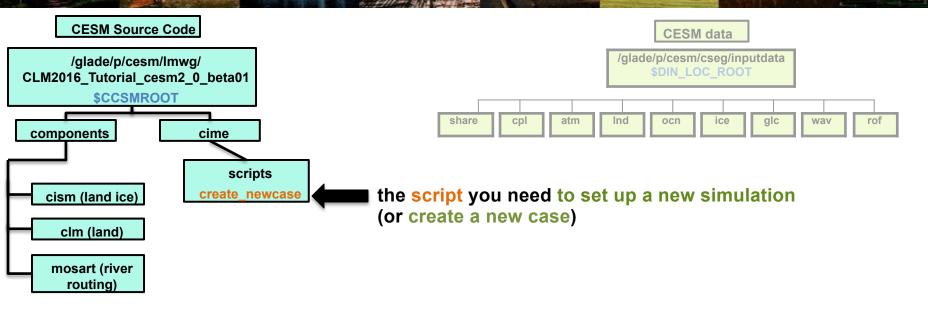
When you see the token response prompt, enter your pin and then touch the yubikey button.

Exercise 1: Create & run an out-of-the-box simulation

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

(1) create a new case


(2) invoke case.setup

(3) build the executable

(4) submit your run to the batch queue

We will progress step by step, starting with step 1

CLM Directory Structure

Note: This week, we are using a CLM code base, which has fewer subdirectories than the CESM code base.

Follow the steps on the next slide to set up a simulation

Work Flow: Super Quick Start

Transaction and the second

Exercise 1: Create & run an out-of-the-box simulation To Do:

cd into scripts directory from the source code directory:

cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

Type this command line:

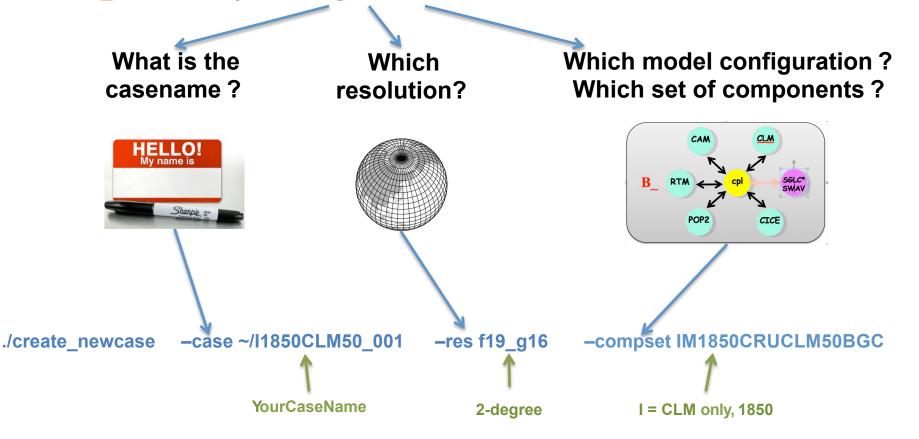
./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

Stop here

(2) invoke case.setup

(3) build the executable

(4) submit your run to the batch queue


Next, let's dig into the details of this command to understand the parts

Create a new case

In the scripts directory, create_newcase is the tool that generates a new case.

create_newcase requires 3 arguments

Note: A previously required 4th argument, "-mach", is no longer needed when using a supported machine. CIME now figures out what machine you are running on. If you are running on an unsupported machine, this argument is required.

3 arguments required by create_newcase:

create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

3 arguments required by create_newcase:

create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

case is the location and name of the case being created
 ~/I1850CLM50_001
 "~" = home directory, or /glade/u/home/{username}
 I1850CLM50_001 = case directory name

Recommendation: Use meaningful names, including model version, type of simulation, and any additional details to help you remember the configuration of this simulation

Note: Steps 2-4 take place in the case directory that you create here in step 1. More on that coming up.

THE REAL PROPERTY OF THE PARTY OF THE PARTY

3 arguments required by create_newcase:

create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

res specifies the model resolutions (or grid): f19_g16 (atm/Ind_ocn/ice)

Grid naming convention

Each model resolution can be specified by its alias, short name and long name.

Example of equivalent alias, short name and long name:

- alias: f19_g16 (atm/Ind_ocn/ice)
- short name: 1.9x2.5_gx1v6

CRAMES CONSTRAINTS

ocn river Ind-ice wave

3 arguments required by create_newcase:

create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

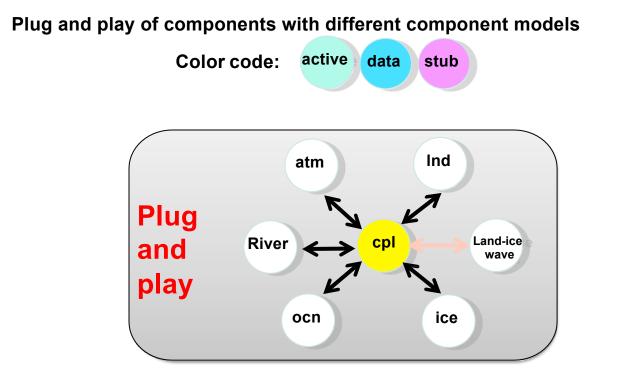
compset specifies the "component set"

Component set specifies component models (e.g. active vs data), forcing scenarios (e.g. 1850 vs 2000) and physics options (e.g. CLM4.5 vs CLM5.0) for those models. All CLM-only compsets start with "I".

Compset naming convention

Each model compset can be specified by its alias, short name and long name. Example of equivalent alias, short name and long name:

- alias: IM1850CRUCLM50BGC

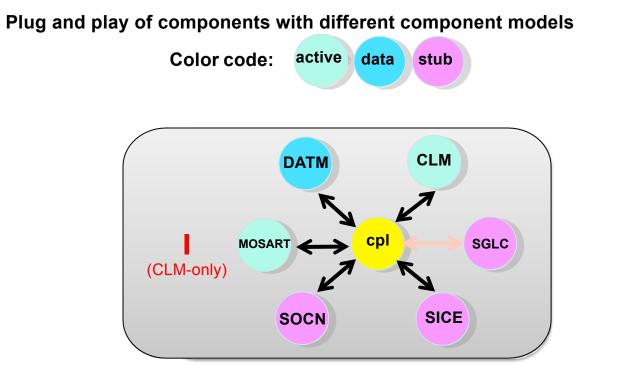

time

- long name = 1850_DATM%CRU_CLM50%BGC_SICE_SOCN_MOSART_SGLC_SWAV

ice

Ind

More on CESM component sets

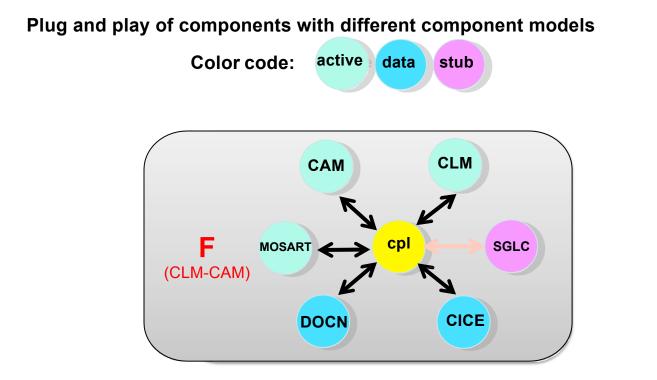


Key Definitions:

Active: Simulation is using the code from the model during the run

- **Data**: Simulation is reading in data from a file for this component
- **Stub**: Component is not being used

More on CESM component sets



Key Definitions:

Active: Simulation is using the code from the model during the run

- **Data**: Simulation is reading in data from a file for this component
- **Stub**: Component is not being used

More on CESM component sets

Key Definitions:

Active: Simulation is using the code from the model during the run

- **Data**: Simulation is reading in data from a file for this component
- **Stub**: Component is not being used

create_newcase: More Information & Help

In the scripts directory (in the Source Code), where you run the command "create_newcase", you can search for compsets, resolutions (e.g. model grid), etc.:

./manage_case -query <type>

Where "*type*" can be: compsets -setby <*name*>; component -name <*name*>; grids; machines And "*name*" is the name of a particular model component, like clm, cam, datm, etc.

For example: ./manage_case -query compsets -setby clm Will list all the "I" compsets available

For additional help and options: ./manage_case -help

Note: In the released version of CLM5.0, the syntax will change to "./manage_case --query-<type>" (e.g., ./manage_case --query-grids). See ./manage_case --help for all options.

create_newcase: More Information & Help

CESM Models

Home » CESM Models » CESM2.0 Series Public Release

** DRAFT ** CESM2.0 SERIES PUBLIC RELEASE

ABOUT THIS RELEASE SERIES

CESM2.0 SERIES RELEASE NOTES

SCIENTIFIC VALIDATION

Scientific validation consists of a multi-decadal model run of the given component set at the target resolution, followed by scientific review of the model output diagnostics. All scientifically supported component sets are also accompanied by diagnostic and model output data.

What version of the model should I use?

For a scientifically supported target component set and resolution, please refer to the Scientifically Validated Configurations for that target configuration.

DIAGNOSTIC PACKAGES AND NAMING CONVENTIONS

- Post Processing Utilities
- Model File Naming Conventions
- Experiment Case Naming Conventions

MODEL DOCUMENTATION

CESM2.0

- User's Guide
- Machines
- Resolutions
- Component Sets
- Model Component Namelists
 \$CASEROOT xml files
- SCASEROOT XIIIT THES

Component Models

- Atmosphere Models
- Land Models
- Sea Ice Models
- Ocean Models
- Land Ice Models
 River Models
- Coupler

CESM PROJECT

The Community Earth System Model (CESM) is a fully-coupled, global clinate model that provides state-ofthe-art computer simulations of the Earth's past, present, and future climate states.

CESM is sponsored by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE), Administration of the CESM is maintained by the Climate and Clobal Dynamics Laboratory (CGD) at the National Center for Atmospheric Research (NCAR),

MODEL SOURCE CODE

Copyright and Terms of Use All CESM source code is subject to the following Copyright Notice and Disclaimer.

Acquiring the Release Code

The source code for CESM releases is distributed through a public Subversion code repository. This code can be checked out using Subversion client software, such as the command tool svn, or simply view the latest version with a web browser.

A short registration is required to access the repository. After registering, you will receive an email containing a user name and password that is necessary to gain access to

A list of valid values is also available on the CESM website:

http://www.cesm.ucar.edu/models/cesm2.0/

TRANSPORT OF THE OWNER.

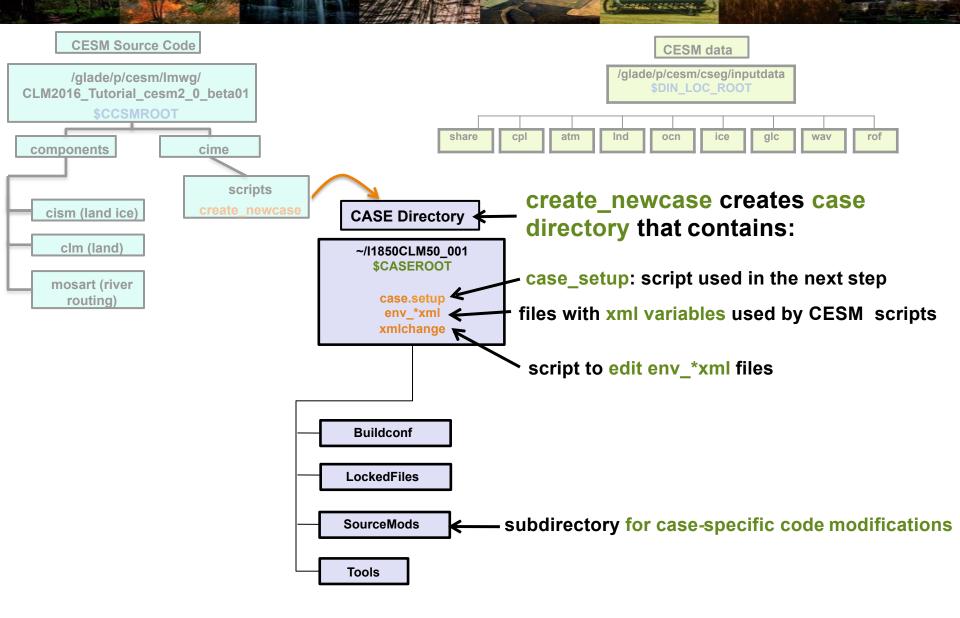
Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory:

cd /glade/p/cesm/Imwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case


./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

This command line creates a case directory with the case name you specified. Let's explore that directory structure.

(2) invoke case.setup

(3) build the executable

CLM Directory Structure

Work Flow: Super Quick Start Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/lmwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC Using this command line, we just set up a new simulation and created the case directory.

(2) invoke case.setup

(3) build the executable

Work Flow: Super Quick Start Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory:

cd /glade/p/cesm/Imwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

Now we'll configure the case you just set up.

(3) build the executable

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory:

cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

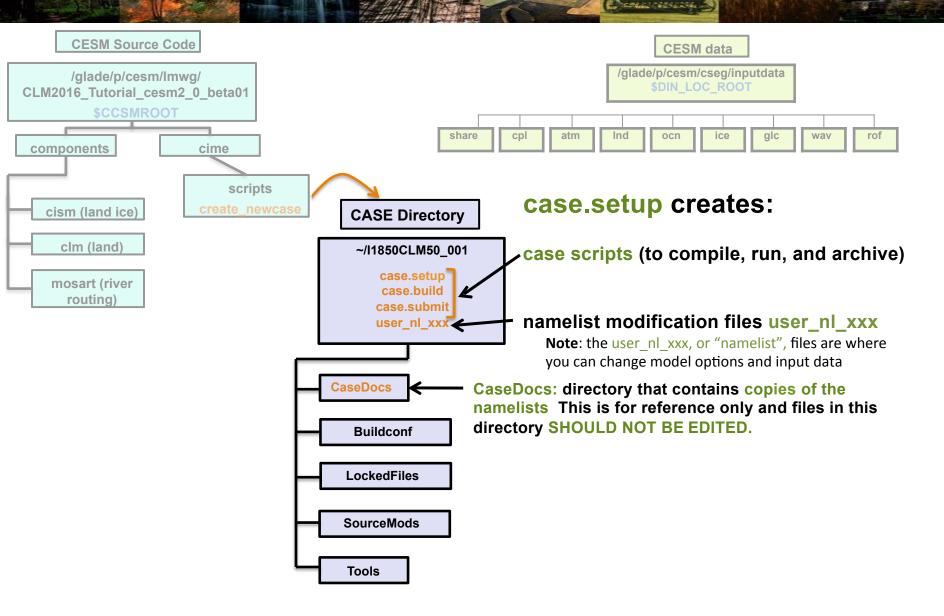
./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

Start here

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50_001


Type this command line:

./case.setup

Stop here

(3) build the executable

CLM Directory Structure

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/lmwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50_001 ./case.setup

Using this command line, we just configured the model and created the files to modify options & input data.

(3) build the executable

Conception and and

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/Imwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create newcase -case ~/I1850CLM50 001 -res f19 g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50 001 ./case.setup

Next, we will compile the model code

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory:

cd /glade/p/cesm/Imwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

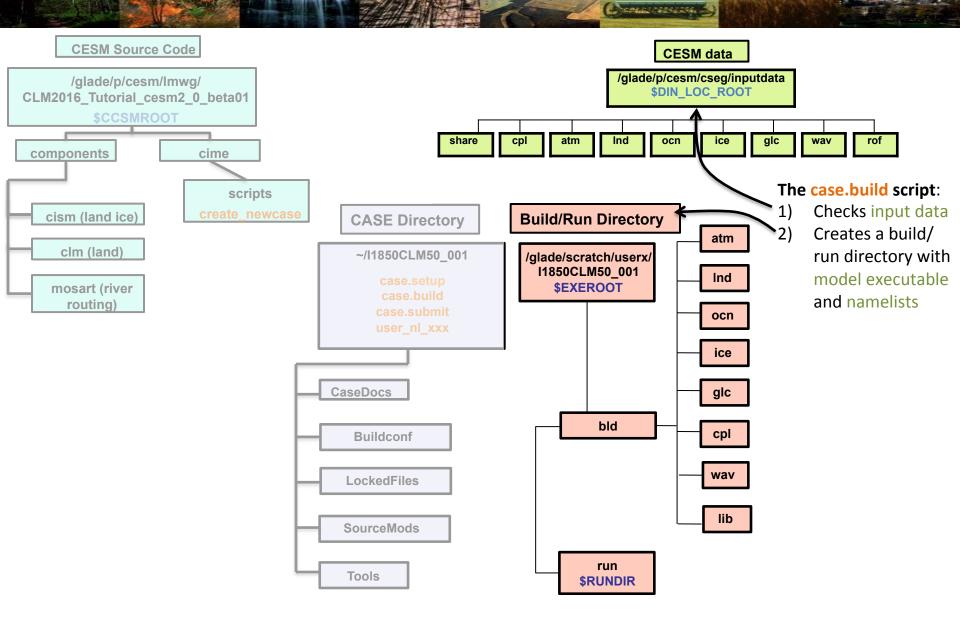
(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50_001 ./case.setup


Start here

(3) build the executable

Type this command line: ./case.build

Stop here

CLM Directory Structure

Note: If an input data is missing, build aborts and provides a list of missing files.

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/lmwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50_001 ./case.setup

(3) build the executable

Type this command line:

./case.build

Using this command line, we just compiled the model and created a run directory with model executables.

(4) submit your run to the batch queue

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/lmwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I1850CLM50_001 ./case.setup

(3) build the executable

Type this command line: ./case.build

(4) submit your run to the batch queue

We're on the last step! We will submit the simulation to the supercomputer queue

Work Flow: Super Quick Start

Exercise 1: Create & run an out-of-the-box simulation

cd into scripts directory from the source code directory: cd/glade/p/cesm/lmwg/CLM2016 Tutorial cesm2 0 beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

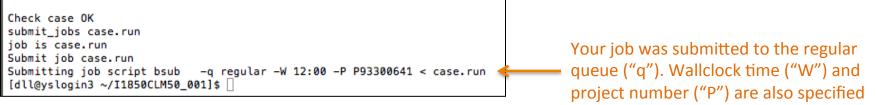
cd into case directory:

cd ~/I1850CLM50_001 ./case.setup

(3) build the executable

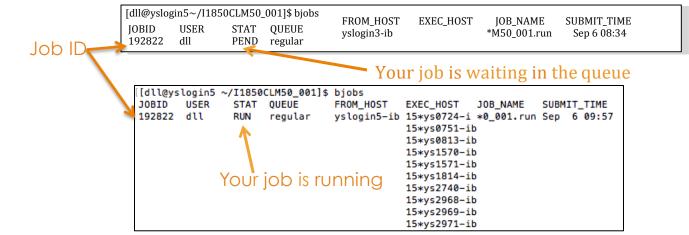
Type this command line: ./case.build

Start here


(4) submit your run to the batch queue

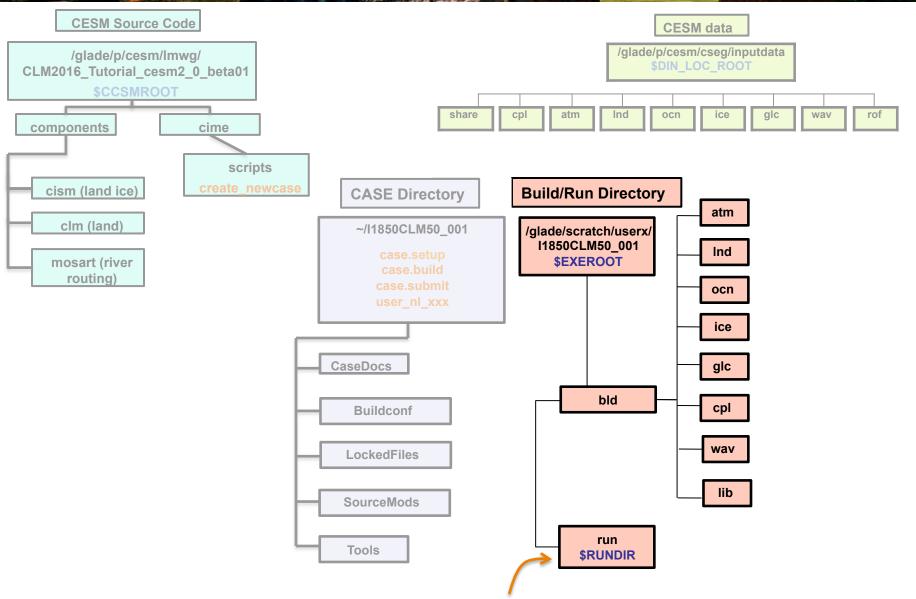
Type this command line: ./case.submit

Submit and Check Job Status

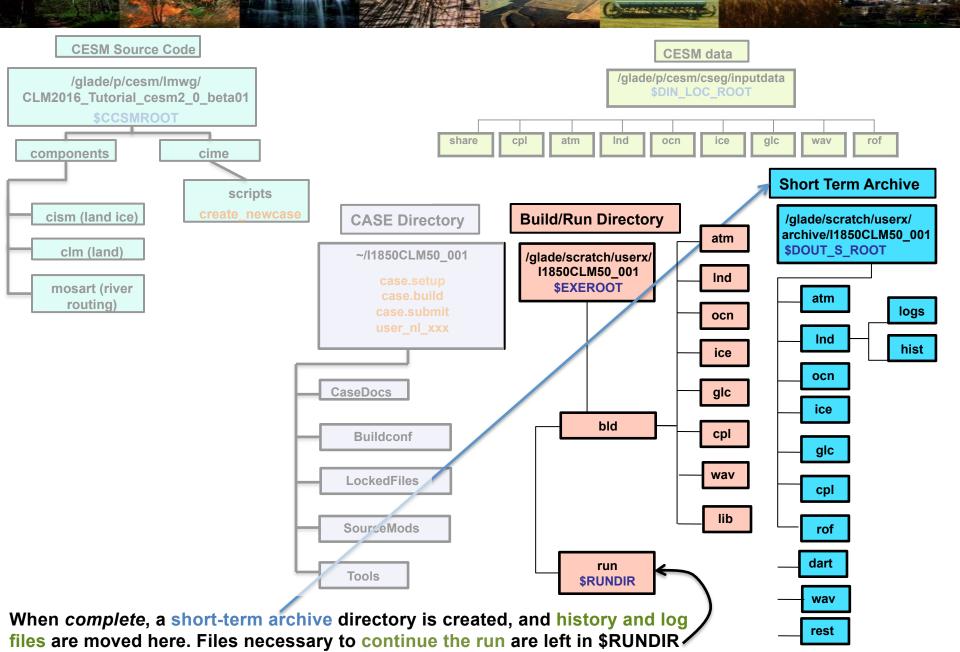

When you submit a job, you will see confirmation that it successfully submitted:

Checking jobs:

Killing jobs:


- a. Type bjobs or
- b. Type *bjobs –uall* to see everyone's jobs

- a. Find your Job ID after typing bjobs
- b. Type *bkill <Job ID>*


CLM Directory Structure

The second s

When *running*, the model scripts write files into your run directory.

CLM Directory Structure

Up Next: Making changes to CLM configuration options

Outline

CREAT CONTRACTOR

• CESM at a glance

- 1) The CESM framework
- 2) Finding information about CLM & CESM
- 3) Overview of CLM (and CESM) directory structure

Basic workflow

- 1) Create a new case
- 2) Invoke case_setup
- 3) Build the executable
- 4) Run and output data

Changing configuration options

- 1) Component Sets
- 2) ENV files (env_[command])
- 3) Namelist files (user_nl_[model])

Getting help

• Appendix

Review: The 4 commands to run CLM

cd into scripts directory from the source code directory:

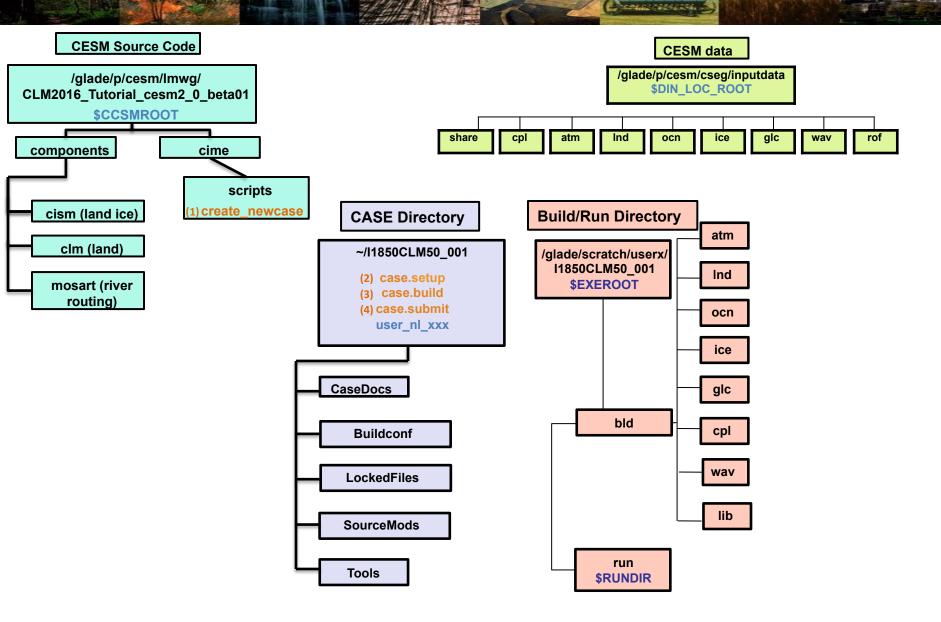
cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory: cd ~/I1850CLM50_001 ./case.setup


(3) build the executable

Type this command line: ./case.build

(4) submit your run to the batch queue

Type this command line: ./case.submit

Review: CLM Directories & Commands

Review: Queues and Jobs

On Yellowstone

Checking jobs:

- a. Type bjobs or
- b. Type bjobs --uall to see everyone's jobs, or

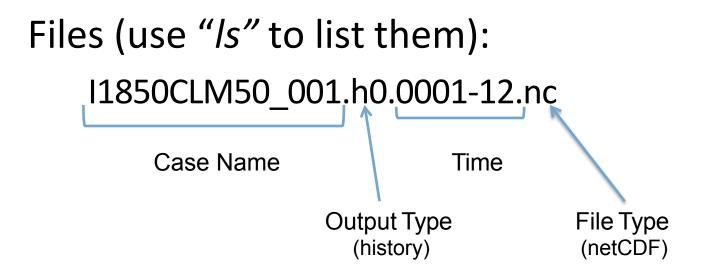
<u>Killing jobs</u>:

- a. Find your JOBID after typing bjobs
- b. Type *bkill <JOBID>*

Finding model output

Change this to your user name

Directory:


/glade/scratch/{userXX}/archive/I850CLM50_001/Ind/hist

Finding model output

Directory: Change this to your user name

/glade/scratch/{userXX}/archive/I850CLM50_001/Ind/hist

3 Types of Basic Modifications

Constantin de santas

1. Component Sets

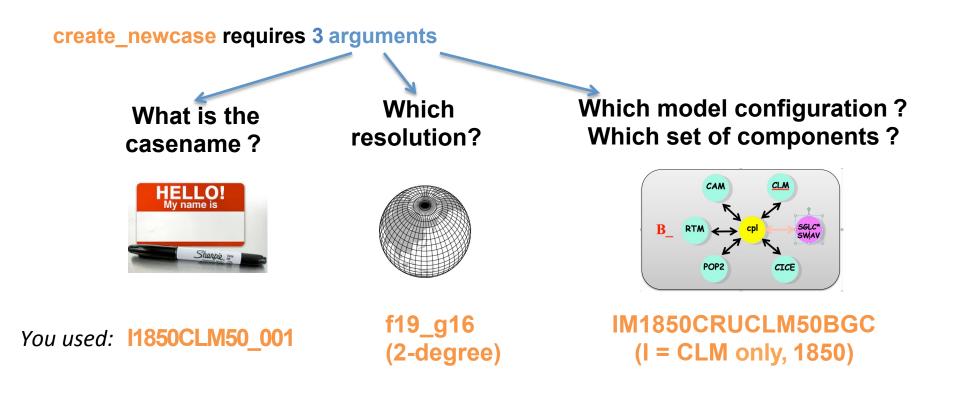
2. ENV files (env_[command])

3. Namelist files (user_nl_[model])

3 Types of Basic Modifications

Anna and an and a state of the

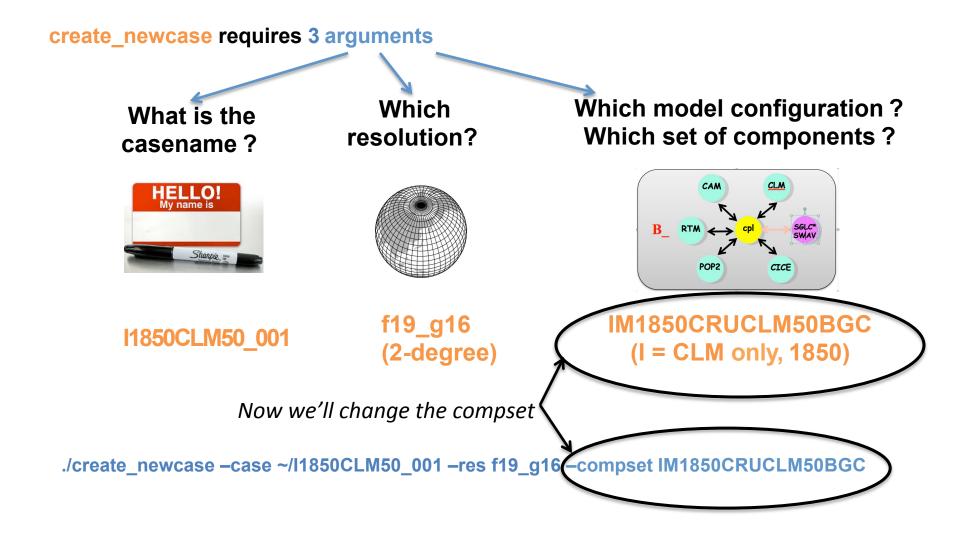
1. Component Sets


Set up a simulation for 2000

2. ENV files (env_[command])

3. Namelist files (user_nl_[model])

Create a new case



The command line:

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

Create a new case

Changing Simulation Components

Compset, or component set: predefined options for running the model

Use compset to change the type of simulation

Changing compsets lets you run different experiments

Some component options:

- Year (1850, 2000, transient, etc.)
- Data atmosphere (GSWP3, CRUNCEP, CPLHIST3HrWx)
- Model options (SP [satellite phenology], BGC [biogeochemistry])
- RCP scenarios

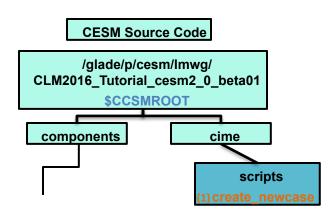
Changing compsets lets you run different experiments

Some component options:

- Year (1850, 2000, transient, etc.)
- Data atmosphere (GSWP3, CRUNCEP, CPLHIST3HrWx)
- Model options (SP [satellite phenology], BGC [biogeochemistry])
- RCP scenarios

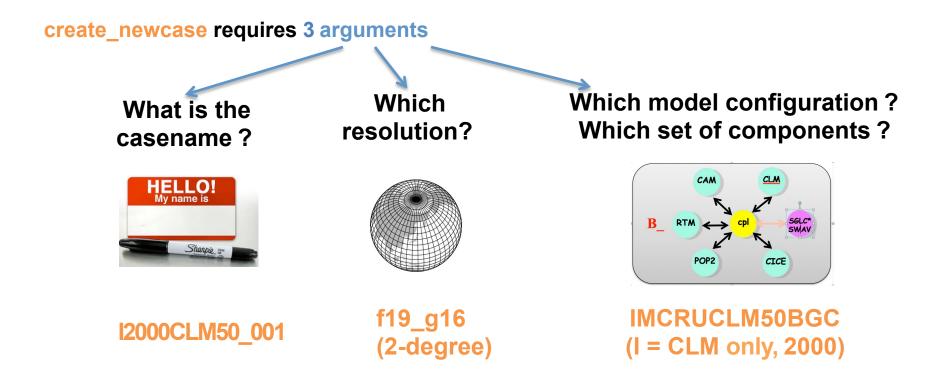
Examples of simulations using different compsets:

- Stabilize ("spin up") a biogeochemsitry (includes N & C cycles) simulation for 1850
- Run a transient historical simulation from 1850-2000 based on the 1850 spin up
- Run a transient future simulation from 2000 through 2100 using RCP8.5
- Run a "time slice" simulation for 2000


Where to find a list of compsets:

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/ compsets.html

Website lists ALL compsets for released CESM. CLM only = "I" compsets


In CESM scripts directory, can run: ./manage_case -query compsets -setby clm

Tip: Add " | more" at the end of the command line, then use the spacebar to scroll through the options

Exercise 2: Create & build simulation for 2000

./create_newcase -case ~/I2000CLM50_001 -res f19_g16 -compset IMCRUCLM50BGC

Exercise 2: Create & build simulation for 2000

cd into scripts directory from the source code directory:

cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I2000CLM50_001 -res f19_g16 -compset IMCRUCLM50BGC

(2) invoke case.setup

cd into case directory: cd ~/I2000CLM50_001 ./case.setup

(3) build the executable

Type this command line: ./case.build

Stop Here

(4) submit your run to the batch queue

Type this command line: ./case.submit

3 Types of Basic Modifications

CORRECTORNERSS.

1. Component Sets

2. ENV files (env_[command].xml)

Changing the length of the run

3. Namelist files (user_nl_[model])

Exercise 3: Change the length of simulated time

cd into scripts directory from the source code directory:

cd /glade/p/cesm/Imwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I2000CLM50_001 -res f19_g16 -compset IMCRUCLM50BGC

(2) invoke case.setup

cd into case directory: cd ~/I2000CLM50_001 ./case.setup

(3) build the executable

Type this command line: ./case.build

— Change the run length BEFORE submitting
 (4) submit your run to the batch queue

Type this command line: ./case.submit

How To: Change the length of simulated time

Two methods of changing the run length. Method 1 uses the "xmlchange" script and is the preferred method

Use when modifying "xml" files (e.g. env_run.xml)

- 1. Benefit: Won't let you mess up the syntax!
- 2. For help, type ./xmlchange -help
- 3. Use "./xmlquery list" to list all variables and their values in all the .xml files

Example: editing env_run.xml via the xmlchange tool

./xmlchange {variable to be changed}={value to change to}

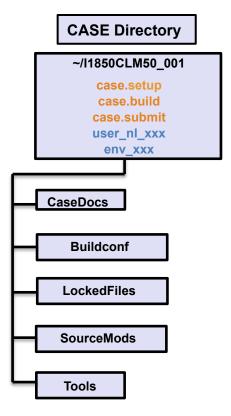
* We won't use xml commands right now, but you will during the next section.

How To: Change the length of simulated time

Constantine and

Method 2 edits the scripts directly and involves two steps:

- 1) Modify env_run.xml to set desired simulated length (STOP_N and STOP_OPTION)
- 2) Modify env_batch.xml to tell computer how much computer time is needed to complete the simulation (JOB_WALLCLOCK_TIME)


When modifying files, use an editor of your choice

Examples:

Emacs nedit vi

Exercise 3: Change the length of simulated time

1)Modify env_run.xml to set desired simulated length

In a text editor*, open env_run.xml

TRAFFIC PROPERTY.

* If you don't have a preferred editor, emacs is user friendly. Type "emacs env_run.xml" (or "emacs anyfilename")

env_run.xml script

This is the beginning of the env_run.xml script:

?xml version="1.0"?> <config_definition> <header> These variables MAY BE CHANGED ANYTIME during a run. Additional machine speific variables that can be changed during a run are contained in the env_mach_specific file Note1: users SHOULD NOT modify BUILD_COMPETE in env_build.xml this is done automatically by the scripts. </header> <groups> <group>external_tools</group> <group>run_begin_stop_restart</group> <group>run_budgets</group> <group>run_cesm</group> <group>run co2</group> <group>run_component_cism</group> <group>run_component_clm</group> <group>run_component_cpl</group> <group>run_component_datm</group> <group>run_component_rtm</group> <group>run_coupling</group> <group>run_data_archive</group> <group>run_desc</group> <group>run_din</group> <group>run_domain</group> <group>run_dout</group> <group>run_drv_history</group> <group>run_flags</group> <group>run_glc</group> <group>run_machine</group> <group>run_mpi</group> <group>run_pio</group> </groups> <entry id="DATA_ASSIMILATION" value="FALSE"> <type>logical</type> <valid values>TRUE, FALSE</valid values> <group>external_tools</group> <desc>Run the external tool pointed to by DATA_ASSIMILATION_SCRIPT after the model run completes</desc> </entry> <entry id="DATA_ASSIMILATION_CYCLES" value="1"> <type>integer</type> <group>external_tools</group> <desc>Number of model run - data assimilation steps to complete</desc> </entry>

1,1

Тор

env_run.xml script

Runtime variables can be changed in env_run.xml at any point and control the mechanics of the run (length, resubmits, and archiving).

Common variables to change include:

1. STOP_OPTION \rightarrow sets the run time interval type, i.e. nmonths, ndays, nyears

2. STOP_N \rightarrow sets the number of intervals to run the model during the specified wallclock* time.

- * Wallclock time is set in the env_batch.xml file and is a measure of the actual time.
- **3. RESUBMIT** \rightarrow sets the number of times to resubmit the run

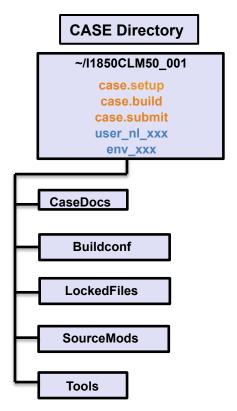
Exercise 3 (Part 1): Run simulation for 5 years

TO DO:

In the env_run.xml script in your I2000CLM50_001 case, change:

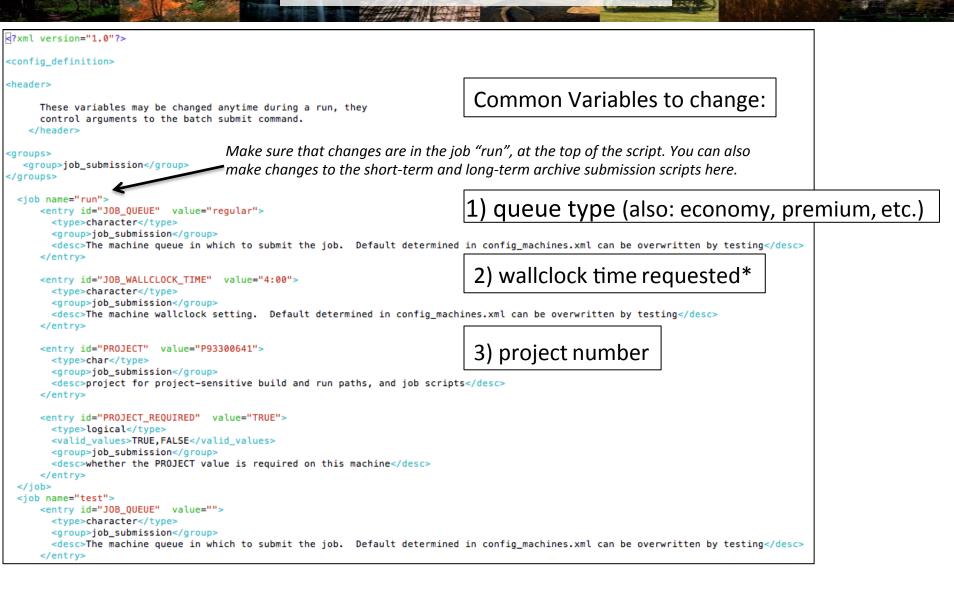
- **1. STOP_OPTION** → change to "nyears"
- 2. STOP_N→ change to "5"
- **3. RESUBMIT** \rightarrow sets the number of times to resubmit the run

We won't use "resubmit" right now. Here is an example for how to run 5 years using the resubmit option:


 $STOP_N = 1$

RESUBMIT = 4

** This will run 5 different simulations for 1 year each **


env_batch.xml script

Exercise 3 (Part 2): Modify env_batch.xml to tell computer how much computer time is needed to complete the simulation (Wall Clock Time)

Using a text editor, open env_batch.xml

env_batch.xml script

*Note: Maximum allowable wall clock time on Yellowstone is 12 hours.

Submissions requesting less time typically have shorter wait times in the queue.

Exercise 3 (Part): Change wall clock time

TO DO:

In the env_batch.xml script in your I2000CLM50_001 case, change:

change JOB_WALLCLOCK_TIME to "2:00"

Exercise 3: Change the length of simulated time

cd into scripts directory from the source code directory:

cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I2000CLM50_001 -res f19_g16 -compset IMCRUCLM50BGC

(2) invoke case.setup

cd into case directory:

cd ~/I2000CLM50_001 ./case.setup

(3) build the executable

Type this command line: ./case.build

After modifying env_run.xml and env_batch.xml, Start Here

(4) submit your run to the batch queue

Type this command line: ./case.submit

3 Types of Basic Modifications

1. Component Sets

2. ENV files (env_[command])

3. Namelist files (user_nl_[model])

* Going back to I1850CLM50_001 case, changing data record frequency

Exercise 4: Changing data record frequency

cd into scripts directory from the source code directory:

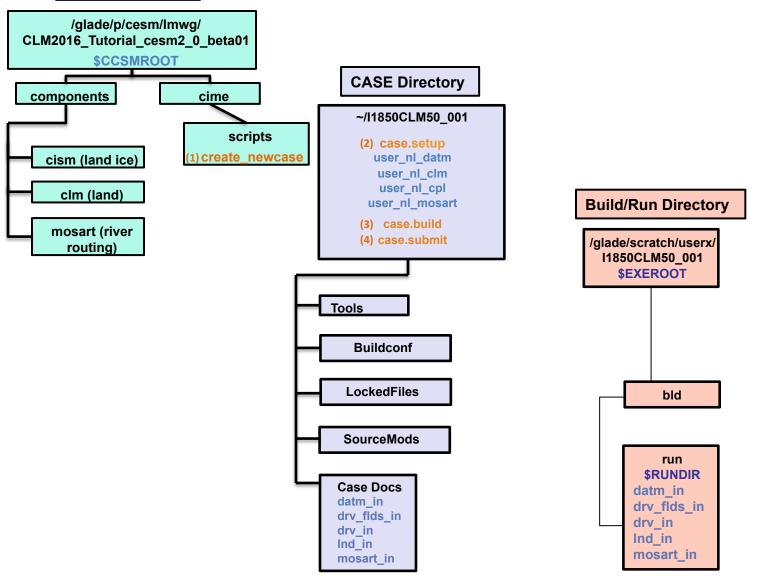
cd /glade/p/cesm/Imwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

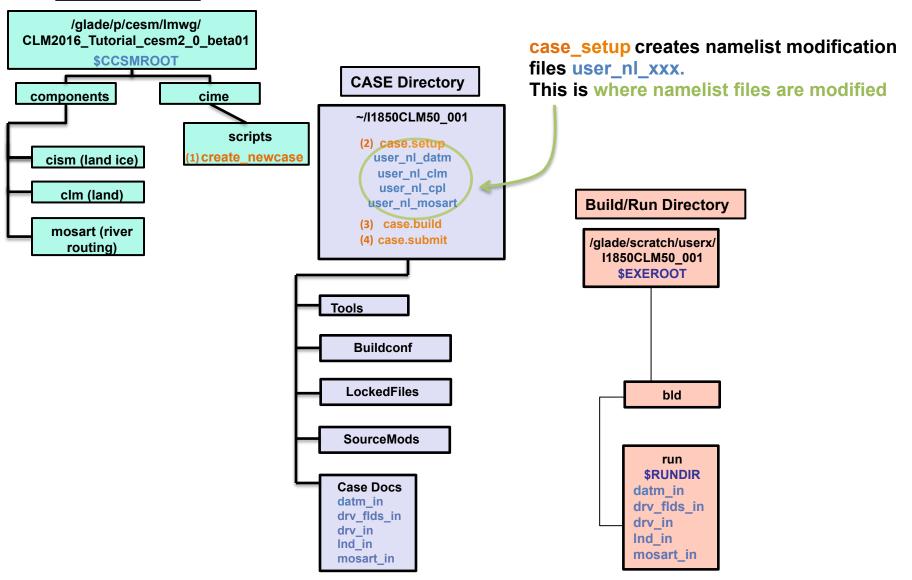
./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

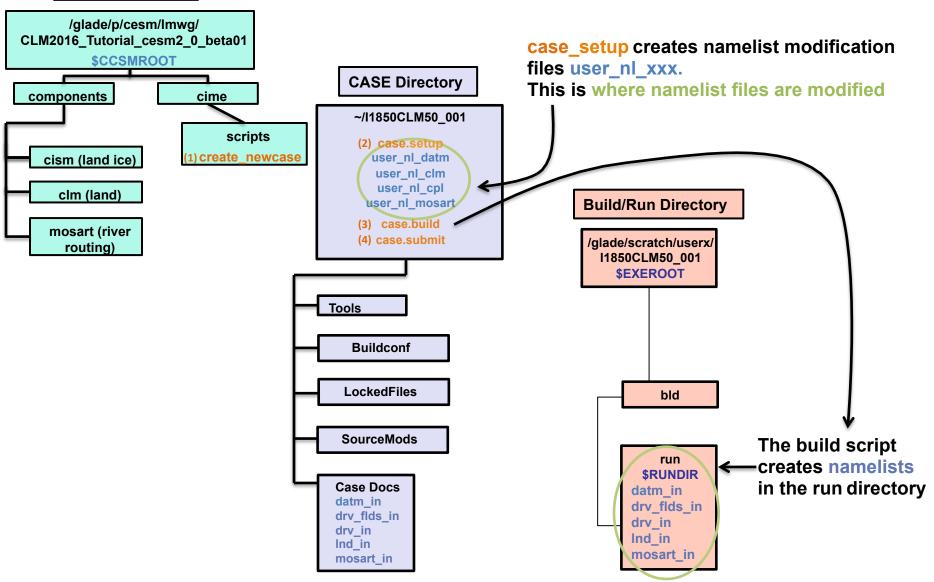
cd into case directory: cd ~/I1850CLM50_001 ./case.setup


(3) build the executable

Type this command line: ./case.build


This is when you modify the namelists.(4) submit your run to the batch queue

Type this command line: ./case.submit


Conservation of the


Constant Constant

Constant Constant

Constant Constant

Exercise 4: Changing data record frequency

- Not all changes can be made in env_run.xml.
- user_nl_<model> files appear in the case directory after ./case.setup is invoked:

Modifying Name lists

- Compsets set up namelists
- user_nl_clm modifies Ind_in name list file

Important: Don't modify the namelist file directly. Make changes in user_nl_clm.

Modifying Name lists

- Compsets set up namelists
- user_nl_clm modifies Ind_in name list file

Important: Don't modify the namelist file directly. Make changes in user_nl_clm.

• Website for CLM namelist variables: http://www.cesm.ucar.edu/models/cesm1.1/cesm/doc/modelnl/nl_clm.html

** Some namelist variables can also be changed in env_run.xml file

Looking at Namelist Files

Note: These files tell the input datasets and model options that your simulation is set up to use. Do not change these files directly. If changes are necessary, modify the user_nl_xxx files.

Consectores and

Option 1

- cd into your case directory, then CaseDocs
 - (~/I1850CLM50_001/CaseDocs)
- Open Ind_in with text editor

Option 2

- cd into your run directory
 - (glade/scratch/l1850CLM50_001/run)
- Open Ind_in with text editor

Open the Ind_in file using one of these options

Beginning of the Ind in file

👚 dll — dll@yslogin5:~/l1850CLM50_001 — ssh -Y dll@yellowstone.ucar.edu — 155×52

```
&clm_inparm
 albice = 0.60,0.40
 co2_ppmv = 284.7
 co2_type = 'constant'
 create_crop_landunit = .false.
 dtime = 1800
 fatmlndfrc = '/glade/p/cesmdata/cseg/inputdata/share/domains/domain.lnd.fv1.9x2.5_gx1v6.090206.nc'
 finidat = ' '
 fsnowaging = '/glade/p/cesmdata/cseg/inputdata/lnd/clm2/snicardata/snicar_drdt_bst_fit_60_c070416.nc'
 fsnowoptics = '/glade/p/cesmdata/cseg/inputdata/lnd/clm2/snicardata/snicar_optics_5bnd_c090915.nc'
 fsurdat = '/glade/p/cesmdata/cseg/inputdata/lnd/clm2/surfdata_map/surfdata_1.9x2.5_16pfts_simyr1850_c160127.nc'
 glc do dynglacier = .false.
 h2osno_max = 10000.0
 hist_mfilt = 1
 hist_nhtfrg = 0
 limit_irrigation = .true.
 maxpatch_glcmec = 0
 maxpatch_pft = 17
 nlevsno = 12
 nseqspc = 35
 paramfile = '/glade/p/cesmdata/cseg/inputdata/lnd/clm2/paramdata/clm5_params.c160713.nc'
 repartition_rain_snow = .true.
 soil_layerstruct = '20SL_8.5m'
 spinup_state = 0
 use_bedrock = .true.
 use_century_decomp = .true.
 use_cn = .true.
 use_crop = .false.
 use dynroot = .false.
 use ed = .false.
 use_fertilizer = .false.
 use_flexiblecn = .true.
 use_fun = .true.
 use_grainproduct = .false.
 use_hydrstress = .true.
 use_lch4 = .true.
 use luna = .true.
 use_nguardrail = .true.
 use_nitrif_denitrif = .true.
 use_vertsoilc = .true.
&ndepdyn_nml
 ndepmapalgo = 'bilinear'
 stream_fldfilename_ndep = '/glade/p/cesmdata/cseg/inputdata/lnd/clm2/ndepdata/fndep_clm_hist_simyr1849-2006_1.9x2.5_c100428.nc'
 stream_year_first_ndep = 1850
 stream_year_last_ndep = 1850
&popd_streams
 popdensmapalgo = 'bilinear'
 stream_fldfilename_popdens = '/qlade/p/cesmdata/cseq/inputdata/lnd/clm2/firedata/clmforc.Li 2012 hdm_0.5x0.5_AVHRR_simyr1850-2010 c130401.nc'
 stream_year_first_popdens = 1850
```

• • •

Тор

1,1

Beginning of the Ind_in file

• • •	👚 dll — dll@yslogin5:~/l1850CLM50_001 — ssh -Y dll@yellowstone.ucar.edu — 155×52		
Sclm_inparm			8
albice = 0.60,0.40 co2_ppmv = 284.7			1
co2_type = 'constant'		[CO ₂]	
<pre>create_crop_landunit = .false. dtime = 1800</pre>			
	<pre>a/inputdata/share/domains/domain.lnd.fv1.9x2.5 gx1v6.090206.nc'</pre>		
finidat = ' '	/inbutdata/share/domains/domain.thu.ivi.yzz.> uxiv0.eseze0.nc	File with initial condition	nc
		The with mitial condition	115
	g/inputdata/lnd/clm2/snicardata/snicar_drdt_bst_fit_60_c070416.nc'		
	eq/inputdata/lnd/clm2/snicardata/snicar_optics_5bnd_c090915.nc' nputdata/lnd/clm2/surfdata_map/surfdata_1.9x2.5_16pfts_simyr1850_c160127.nc'		
	putdata/lnd/clm2/surrdata_map/surrdata_1.9x2.5_topits_simyrio50_cio012/.nc	File with surface datase	£
glc_do_dynglacier = .false.			
h2osno_max = 10000.0			
hist_mfilt = 1			
hist_nhtfrq = 0			
<pre>limit_irrigation = .true.</pre>			
<pre>maxpatch_glcmec = 0</pre>			
<pre>maxpatch_pft = 17</pre>			
nlevsno = 12			
nsegspc = 35			
	/inputdata/lnd/clm2/paramdata/clm5_params.c160713.nc'		
<pre>repartition_rain_snow = .true.</pre>			
<pre>soil_layerstruct = '20SL_8.5m'</pre>			
spinup_state = 0			
use_bedrock = .true.			
<pre>use_century_decomp = .true.</pre>			
use_cn = .true.			
use_crop = .false.			
use_dynroot = .false.			
use_ed = .false.			
use_fertilizer = .false.	Different compsets will change the status of some of these things.		
use_flexiblecn = .true.	Different compacts will change the status of some of these times.		
use_fun = .true.			
use_run = .true. use_grainproduct = .false.			
use_grainproduct = .fatse. use_hydrstress = .true.			
use_hydrstress = .true. use_lch4 = .true.			
use_tcn4 = .true. use_luna = .true.			
use_tuna = .true. use_nguardrail = .true.			
<pre>use_nitrif_denitrif = .true.</pre>			
<pre>use_vertsoilc = .true.</pre>			
&ndepdyn_nml			
ndepmapalgo = 'bilinear'			
	/cesmdata/cseg/inputdata/lnd/clm2/ndepdata/fndep_clm_hist_simyr1849-2006_1.9x2.5_c100428.nc'		
<pre>stream_year_first_ndep = 1850</pre>			
<pre>stream_year_last_ndep = 1850</pre>			
/			
&popd_streams			
popdensmapalgo = 'bilinear'			
<pre>stream_fldfilename_popdens = '/glade/</pre>	e/p/cesmdata/cseg/inputdata/lnd/clm2/firedata/clmforc.Li_2012_hdm_0.5x0.5_AVHRR_simyr1850-201	10_c130401.nc'	
<pre>stream_year_first_popdens = 1850</pre>			
		1,1 To	op 🛛

Example Modification: user_nl_clm Changing the frequency of model output

hist_mfilt: Number of samples within a file

Default is 1

Setting value to 12 would put 12 records into a single file

Example Modification: user_nl_clm Changing the frequency of model output

Terrate of the second

hist_mfilt: Number of samples within a file

Default is 1

Setting value to 12 would put 12 records into a single file

hist_nhtfrq: Frequency that data are recorded and written to a file

Default: 0 means that output is recorded every month (monthly averages)
 Positive Values: Number of model timesteps (half---hourly) for output record ex: 48 means output is recorded every day (daily averages)
 Negative Values: Absolute value in hours for output record

ex: -1means output is recorded hourly; -24means output is recorded daily

* Both hist_mfilt & hist_nhtfrq must be integers

Example Modification: user_nl_clm Changing the frequency of model output

Anna and the second

Daily output with a years worth of daily records in a file: hist_mfilt = 365

hist_nhtfrq = -24

Monthly output with each month written to a separate file (default, as in I2000CLM50_001 case):

- hist_mfilt = 1
- hist_nhtfrq = 0

For this tutorial, we changed the default data record setting to daily in the I1850CLM50 compset.

Example 4: Modify user_nl_clm to get monthly output, 1 file per month in I1850CLM50_001

For this tutorial, we changed the default data record setting to daily in the I1850CLM50 compset.

Example 4: Modify user_nl_clm to get monthly output, 1 file per month in I1850CLM50_001

In user_nl_clm, add:

hist_mfilt = 1

hist_nhtfrq = 0

Then, run I1850CLM50_001 for 5 years. To do this:

- Change user_nl_clm to record monthly output
- 2. Change STOP_OPTION and STOP_N variables in env_run.xml
- 3. Change wall clock time in env_batch.xml
- 4. Rerun the simulation: case.submit

Use what you learned from the previous examples to make these changes

Exercise 4: Changing data record frequency

cd into scripts directory from the source code directory:

cd /glade/p/cesm/lmwg/CLM2016_Tutorial_cesm2_0_beta01/cime/scripts

(1) create a new case

./create_newcase -case ~/I1850CLM50_001 -res f19_g16 -compset IM1850CRUCLM50BGC

(2) invoke case.setup

cd into case directory: cd ~/I1850CLM50_001

./case.setup

(3) build the executable

Type this command line: ./case.build

After modifying the namelists, Start Here

(4) submit your run to the batch queue

Type this command line: ./case.submit

Note: The case.submit script will automatically update and check the namelists. If you want to update and check your namelists before submitting, you can also run the "preview_namelists" script.

Now YOU know how to run the CLM!

Use these 3 basic modifications to run a variety of simulations.

- 1. Component Sets
- 2. ENV files (env_[command])
- 3. Namelist files (user_nl_[model])

Documenting Your Changes: README files

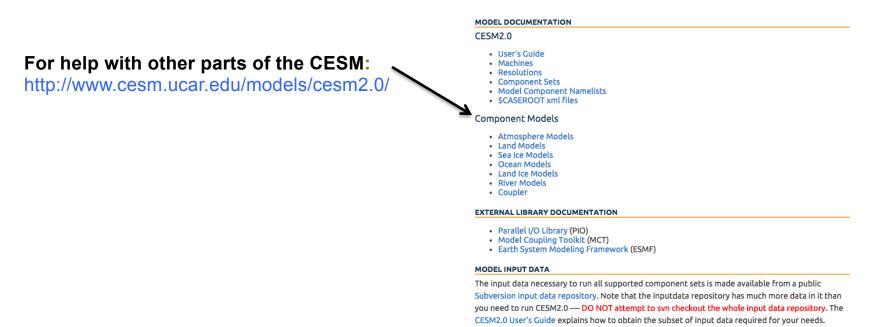
In your case directory, you will find automatically generated documentation files.

README.case file: detailed information on your compset and resolution, including whether your configuration has science support.

Best Practice: In the *README.case file*, we highly recommend YOU document any changes you make to the default scripts. It is YOUR paper trail and opportunity to list modifications.

Exercises: Test Your Knowledge

- 1) Set up a 2-degree CLM5.0-BGC simulation for 2000 and run for 1 month with daily history files.
- 2) Set up a 2-degree CLM5.0-BGC historical simulation and run for 5 years with monthly history files
- 3) Set up a 1-degree CLM5.0-BGC 1850 simulation and run for 1 year with monthly history files


For additional information on running & configuring CLM, see CLM User's Guide

COLOUR DE LO DE

CLM User's Guide:

http://www.cesm.ucar.edu/models/cesm1.2/clm/models/Ind/clm/doc/UsersGuide/book1.html

Note: The CLM5.0 User's Guide is currently a work in progress. Look for the new version with the CESM2.0 release

Getting Help

Concession and and

CESM Bulletin Board: http://bb.cgd.ucar.edu/

JCAR	DiscussCESM			Earth System
ORUMS	REGISTER LOGIN			Search
Home » F	orums			
FOR	UMS			
iew Forur	ms Active topics Unanswered topics			() ()
The Com	Ceneral munity Earth System Model (CESM) is a fully coupled, global climate model that as of the Earth's past, present, and future climate states.	provides <mark>sta</mark> te	-of-the-art co	amputer a
	Forum	Topics	Posts	Last post
۵	Announcements	16	41	CESM1.2.0 Release Announcement by aliceb June 12, 2013 - 11:52am
Δ	Bug reporting	110	306	output date error - monthly history files shifted 1 month by eaton 11 hours 50 min ago
Δ	Input Data Inquiries	108	260	CICE input data for B20TR? by marvel1@ 11 hours 3 min ago
Δ	Output Data inquiries	85	202	start time by hannay May 22, 2013 - 2:02pm
Δ	Tools A place for questions about the ESMF mapping tools and the cprnc tool as well as any topics related to grid generation.	3	10	runoff_to_ocn by cyoo@ May 23, 2013 - 8:22am
Δ	Software Development Includes issues for building/running on supported machines and porting to unsupported machines	174	515	Error in porting CESM by jedwards June 14, 2013 - 10:00am
٨	General Discussion Includes requests for new features and configuration inquiries	193	458	More general MOC computation in POP by afrigola@ June 10, 2013 - 11:48am
Δ	Subversion Issues Forum For Issues related to the new version control system	9	20	CCSM4/CESM1_0 download problem by sirajkhan78@ March 4, 2011 - 5:06pm
Δ	Tutorials For discussion regarding the web based modeling tutorials	5	13	Basic B_1850 Compilation by sstrey2@ June 4, 2013 - 9:10am

Appendix

- Registration
- Download the source code
- Hardware/software requirements

(A) Registration

• Go to CESM2.0 home page: <u>http://www.cesm.ucar.edu/models/cesm2.0/</u>

CESM Models

Home » CESM Models » CESM2.0 Series Public Release

** DRAFT ** CESM2.0 SERIES PUBLIC RELEASE

ABOUT THIS RELEASE SERIES

CESM2.0 SERIES RELEASE NOTES

SCIENTIFIC VALIDATION

Scientific validation consists of a multi-decadal model run of the given component set at the target resolution, followed by scientific review of the model output diagnostics. All scientifically supported component sets are also accompanied by diagnostic and model output data.

What version of the model should I use?

For a scientifically supported target component set and resolution, please refer to the Scientifically Validated Configurations for that target configuration.

DIAGNOSTIC PACKAGES AND NAMING CONVENTIONS

- Post Processing Utilities
- Model File Naming Conventions
- Experiment Case Naming Conventions

MODEL DOCUMENTATION

CESM2.0

- User's Guide
- Machines
- Resolutions
- Component Sets
 Model Component Namelists
- SCASEROOT xml files

Component Models

- Atmosphere Models
- Land Models
- Sea Ice Models
 Ocean Models
- Land Ice Models
- River Models
- Coupler

EXTERNAL LIBRARY DOCUMENTATION

- Parallel I/O Library (PIO)
- Model Coupling Toolkit (MCT)
- Earth System Modeling Framework (ESMF)

MODEL INPUT DATA

The input data necessary to run all supported component sets is made available from a public Subversion input data repository. Note that the inputdata repository has much more data in it than you need to run CESM2.0 — DO NOT attempt to svn checkout the whole input data repository. The CESM2.0 User's Guide explains how to obtain the subset of input data required for your needs.

PERFORMANCE AND LOAD BALANCING DATA

The development and testing of CESM2.0 required several iterations in the CESM1.Y series. The following timing tables for each model revision are available:

- CESM1.3 Timing Table
 CESM1.5 Timing Table
- CESM2.0 Timing Table

CESM PROJECT

The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-ofthe-art computer simulations of the Earth's past, present, and future climate states.

CESM is sponsored by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE). Administration of the CESM is maintained by the Climate and Global Dynamics Laboratory (CGD) at the National Center for Atmospheric Research (NCAR).

MODEL SOURCE CODE

Copyright and Terms of Use All CESM source code is subject to the following Copyright Notice and Disclaimer.

Acquiring the Release Code

The source code for CESM releases is distributed through a public Subversion code repository. This code can be checked out using Subversion client software, such as the command tool swn, or simply view the latest version with a web

A short registration is required to access the repository. After registering, you will receive an email containing a user name and password that is necessary to gain access to the repository.

Acquisition of the code is more fully described in the most recent version of the CESM1.2 User's Guide.

REPORTING A PROBLEM

If you have any problems, please first read the User's Guide including the sections on FAQs and Use Cases. Please also refer to the CESM Bulletin Board, which is in place to facilitate communication within the CESM community. Finally, please also refer to the Release Notes entries that are provided with every release and release update. If questions or problems still exist, then please send an email to cesm-help@cgd.ucar.edu. Support questions will be answered as resources are available.

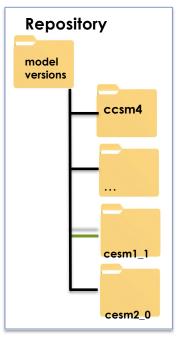
CESM SUPPORT POLICY

Right hand column has a link to the registration page, click on it

nunity Earth System Model	
CESM	1.0 Release User Registration
	Required Helds
Last Name:	
First Name:	
E-Mail:	
Institution:	
Purpose: Valid special characters to use: . period hyphen apostrophe. / forward stash, : coden, . coemas. No additional special characters are allowed.	
	(Maximum characters: 400) Yuu have 400 characters left.
Have you used previous versions of CCSM/CESM? [*]	Oyes ON0
Publications using previous versions of CCSM/CESM: If you have used previous versions of CCSM/CESM, plane previde publications you have using the code. Valid spacial characters to use: 	
	(Maximum characters: 600)
	You have 600 characters left.
Copyright and Terms of Use	
The Community Earth System Model (CESM) of Energy (DOE) the National Aeronautics and (UCAR) and the National Center for Atmosphe	as developed in cooperation with the National Science Foundation (NSF), the Department Spece Administration (NARA), the University Corporation for Atmospheric Research in C. Research (NACS). Except for the speciale components lised in the copyright, CCSM by tools and libraries that are embedded and they are subject to their own copyright notices
The Community Earth System Model (CESM) of Energy (DCE) the National Aeronautics and (UCAR) and the National Center for Armosphe is public domain software. There are third part	Space Administration (INAS), the University Corporation for Annospheric Research ric Research (INCAR). Except for the segregable components listed in the copyright, CCSM ty bools and libraries that are embedded and they are subject to their own copyright notices
The Community Earth System Model (CESM) of Energy (DGC) the National Aeronautics and (UCAR) and the National Center for Armospheris public domain software. There are third part and terms. Please read the Copyright and Terms of Use or	Space Administration (INAS), the University Corporation for Annospheric Research ric Research (INCAR). Except for the segregable components listed in the copyright, CCSM ty bools and libraries that are embedded and they are subject to their own copyright notices
The Community Earth System Model (CESH) of Energy (DD) the National Associations and (DCAR) and the National Center for Armospher is public domains onbarrie. These are third gart and terms. Please read the Copyright and Terms of Use or Access to the Model Once you aspect to the Copyright and Terms of	Space Adversariation (1954), the University Corporation for Adversaria Internet (1962), The University Corporation (1984) and Corporation (2004) (2004) and Elements that are eminded as all they are subject to their own copyright notices the CESHL 0 release home page.
The Community Earth System Model (CESH) of Energy (DD) the National Associations and (DCAR) and the National Center for Armospher is public domains onbarrie. These are third gart and terms. Please read the Copyright and Terms of Use or Access to the Model Once you aspect to the Copyright and Terms of	Speck Administration (ULSA), the University Corporation for Monopheric Research Or Bearch (ULSA). The University Corporation Set of Monopheric Research y both and University that we enabled and they are subject to their case copyright outcome the CESMLD release home page.

Register -- you will be emailed a username and password

(B) Download the Source Code


•Code and input datasets are in a subversion repository (*) https://svn-ccsm-release.cgd.ucar.edu/model_versions

 List the versions available on the CESM repository svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions

(*) You can get subversion at http://subversion.apache.org/

(C) Hardware/Software Requirements

Supported platforms

CESM currently runs "out of the box" today on the following machines

- yellowstone NCAR IBM
- titan ORNL Cray XK6
- hopper NERSC Cray XE6
- edison NERSC Cray Cascade
- bluewaters ORNL Cray XE6
- intrepid ANL IBM Bluegene/P
- mira ANL IBM Bluegene/Q
- janus Univ Colorado HPC cluster
- pleiades NASA SGI ICE cluster
- and a few others

Out of wind af box

out of the box = works immediately after installation without any modification

•Running CESM on other platforms

Require porting + software

- Subversion client (version 1.4.2 or greater)
- Fortran and C compilers (recommend pgi, intel, or ibm xlf compilers)
- NetCDF library (recommend netcdf4.1.3 or later)
- MPI (MPI1 is adequate, Open MPI or MPICH seem to work on Linux clusters)