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Outline 

•  The ingredients of a model 

•  Solving model equations (temporal integration of state equations) 

•  Impact of numerical solution on model simulations 

•  A modular approach to model construction 
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States and flux parameterizations 

State variables 
▫  Represent storage (mass, energy, momentum, etc.) 
▫  Evolve over time: state at time t is a function of states at previous 

times 
 
Flux parameterizations 
▫  Represent exchange/transport 
▫  Rate of flow of a property per unit area 
▫  Only depend on quantities at time t 
Rate of change of a state is determined by fluxes at the boundaries 
of a model control volume 

 
Parameter values 
▫  The (typically time-invariant) constants within flux 

parameterizations 
 



The necessary ingredients of a model  
 
Model forcing data, model state variables, flux parameterizations, 
model parameters, and the numerical solution 

•  Example 1: A temperature-index snow model 
▫  The state equation 

 

▫  Flux parameterizations and model parameters 

▫  Numerical solution 
�  Simple in this case, since fluxes do not depend on state variables 

dS a m
dt

= − State variable 
(also known as prognostic variable) 

Fluxes 

State variable: 
S  = Snow storage (mm) 

Fluxes: 
a   = Snow accumulation (mm/day) 
m = Snow melt (mm/day) 
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Forcing data 

Forcing data Model parameter Physical constant 
(can also be treated as a model parameter) 

Model forcing: 
p  = Precipitation rate (mm/day) 
Ta = Air temperature (K) 

Parameters: 
κ  = Melt factor (mm/day/K) 

Physical constants: 
Tf = Freezing point (K) 



•  Example 2: A conceptual hydrology model 

•  State equation 

Figure from Hornberger et al. 
(1998) “Elements of Physical 
Hydrology” The Johns Hopkins 
University Press, 302pp. 

t s
dS p e r
dt

= − −

The necessary ingredients of a model  
 
Model forcing data, model state variables, flux parameterizations, 
model parameters, and the numerical solution 



•  Example 2: A conceptual hydrology model 
▫  The state equation 

 

▫  Flux parameterizations 

▫  Numerical solution 
�  Care must be taken: model fluxes depend on state variables (numerical daemons) 

t b
dS p e q
dt

= − − State variable 

Fluxes 

State variable: 
S   = Soil storage (mm) 

Model forcing: 
p   = Precipitation rate (mm/day) 

Model fluxes: 
et   = Evapotranspiration (mm/day) 
qb  = Baseflow (mm/day 
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Forcing data 

Forcing data 

Model forcing: 
ep  = Potential ET rate (mm/day) 

Parameters: 
Sps  = Plant stress storage (mm) 
Smax  = Maximum storage (mm) 
ks  = Hydraulic conductivity (mm/day) 
c   = Baseflow exponent (-) 

Model parameter 

Model parameter Model parameter 

Model parameter 

State variable 

State variable 

The necessary ingredients of a model  
 
Model forcing data, model state variables, flux parameterizations, 
model parameters, and the numerical solution 



Outline 

•  The ingredients of a model 

•  Solving model equations (temporal integration of state equations) 

•  Impact of numerical solution on model simulations 

•  A modular approach to model construction 



The exact solution of an ODE system 
•  The ODE system for a simple land model can be written as 

•  The exact solution of the average flux over the interval tn (start of the time step) to   
tn+1 (end of the time step) is 

•  Given an estimate of the average flux, the model state variables can be temporally 
integrated as 

•  The exact solution is computationally expensive, so approximations to the exact 
solution are used 

•  The approximation controls the stability, accuracy, smoothness, and efficiency of the 
solution 
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Let’s start with a skydiving example 
•  A famous land modeler (weight = 90 kg) has decided to go skydiving, and has asked 

you to determine how fast they will fall. 

•  The land modeler thinks that it is acceptable for you to use Newton’s second law of 
motion considering only the gravitational force (Fgrav) and the force due to air 
resistance (Fres) . That is, 

 where m = mass (kg) and v is the fall velocity (m s-1). 

•  Further, the land modeler is quite happy for you to use the empirical representations 

 where k is a proportionality constant (assume k = 15 kg s-1 for freefall and 250 kg s-1 
for landing) and g is the gravitational acceleration (9.81 m s-2). 

•  Based on an initial velocity of zero (the land modeler is hopping out of a hovering 
helicopter), temporally integrate the ODE for a 3 minute period using the explicit 
Euler method with 10 second time steps. 

 

grav res
dvm F F
dt

= +

resF kv= −
gravF mg=



The parachute problem (freefall) 
•  ODE: 

•  Constants: 
▫  m = mass of the hydrologist (90 kg) 
▫  g = gravitational acceleration (9.81 m s-2) 
▫  k = proportionality constant for freefall (15 kg s-1) 

•  Hence 

•  Numerical approximation: explicit Euler 

•  Length of time step: Δt = 10 seconds 

•  Initial velocity = zero m s-1 (hovering helicopter) 

dvm mg kv
dt

= −

  
dv
dt

= g(v)

  v
n+1 = vn + g(vn )Δt



…and, the end result… 



…but now with 0.1 second time steps 



Landing example… 



Once again, short steps save the day… 

									Terminal	velocity	 	=			3.53	m/s	
	 	=	12.71	km/hr	
	 	=			7.89	mi/hr	



Application to land modeling… 



Application to land modeling… 
Surprisingly common model implementation… 



•  The average flux over the time step is approximated as the flux computed from the 
state at the end of the time step 

•  This is an implicit solution 

•  often solved using Newton-Raphson procedure 
 (scalar example) 

Implicit methods 

  
S n+1 = S n + g(S n )+ dg
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•  Or.. for a state vector 



Implicit solution of the parachute problem 



Application to land modeling… 



Impact on the objective function surface 

Implicit	Euler	objec0ve	func0on	surface	 is	similar	
to	the	near-exact	solu0on	obtained	with	adap0ve	
sub-stepping		
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Six simple “bucket-style” models 



Fidelity of fixed-step time stepping schemes 



More detail: objective function x-sections 



Zooming in: micro-scale roughness 



Macro-scale roughness 
contaminates sensitivity analyses 
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Development of a unifying model framework 

Conceptual basis: 
1. Most modelers share a common understanding of 

how the dominant fluxes of water and energy affect 
the time evolution of model states 

2. Differences among models relate to 
a)  the spatial discretization of the model domain; 
b)  the approaches used to parameterize individual 

fluxes (including model parameter values); and  
c)  the methods used to solve the governing model 

equations. 

General schematic of the terrestrial water cycle, 
showing dominant fluxes of water and energy 

The Structure for Unifying Multiple Modeling Alternatives (SUMMA): 
Defines a single set of conservation equations for land biogeophysics, with the 
capability to use different spatial discretizations, different flux parameterizations and 
model parameters, & different time stepping schemes 

Clark et al. (WRR 2011); Clark et al. (WRR 2015a; 2015b) 



The Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) 
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Clark et al. (WRR 2015a) 



Model construction 
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•  Numerical solution 
▫  Traditional approach in land modeling: Operator splitting 
▫  SUMMA: Fully coupled implicit solution 



Model construction 
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•  Modularity 
▫  Modularity at the level of individual fluxes 
▫  Separation of physical processes and the numerical 

solution greatly simplifies adding new modeling options 



Process flexibility 
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Modeling requirements 

•  Scientific requirements 
§  Process flexibility 
§  Spatial flexibility 
§  Numerical flexibility 

•  User requirements 
§  Can be configured to meet a broad range of requirements 
§  Can be configured to minimize run time, and enable use of 

ensembles and extensive model analysis 
§  Easy to modify 

§  Existing multiple hypothesis frameworks meet these 
requirements to varying degrees 
§  JULES, CLM, Noah-MP, etc. 



Summary 

•  The numerical implementation matters 
§  Numerical errors are not “overwhelmed” by other uncertainties 
§  Numerical errors can contaminate almost every aspect of model 

analysis and prediction 

•  Relatively simple numerical solutions provide effective 
and efficient solutions in land models 
§  Stability issues 
§  Order of operations 

§  The next generation of land models should separate the 
physics from the numerical implementation, and provide 
modularity at the level of individual processes (easier for 
the community to engage). 



QUESTIONS?? 


