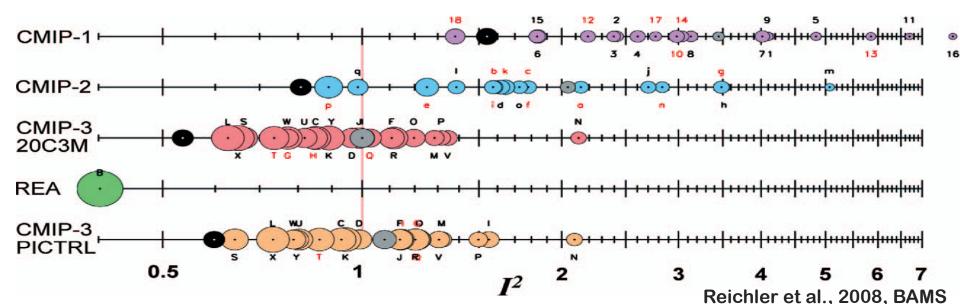
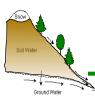


International LAnd Model Benchmarking (ILAMB) Project


Jim Randerson, Forrest Hoffman, Bill Riley, Dave Lawrence, Mingquan Mu, Charlie Koven, Gretchen Keppel Aleks

- Develop benchmarks/metrics for land model performance, with emphasis on breadth (carbon cycle, ecosystem, surface energy, and hydrological processes)
- Support the design and development of a new, open-source, benchmarking software system for diagnostics and MIPs


Ground Wate

 Strengthen linkages between experimental, monitoring, remote sensing, and climate modeling communities in design of model tests and new measurement programs

- Large-scale state and flux estimates
 - LH, SH, total water storage, albedo, river discharge, SCF, LAI, soil and veg C stocks, GPP, NEE, ER, burnt area, permafrost distribution, T_{2m}, P, ...
 - RMSE, spatial pattern corr, interannual variance, annual cycle phase, trends
- Functional relationships and emergent properties
 - soil moisture ET, soil moisture runoff, precip GPP, stomatal response to VPD, precip – burnt area, transient carbon storage trajectory, runoff ratio, spring albedo transition
- Experimental manipulation (testing model functional responses)
 - Nitrogen additions, FACE, artificial warming, rainfall exclusion, ecosystem response to disturbance

- Currently integrates analysis of 25 variables in 4 categories from ~60 datasets
 - Above ground live biomass, burned area, carbon dioxide, gross primary production, leaf area index, global net ecosystem carbon balance, net ecosystem exchange, ecosystem respiration, soil carbon
 - evapotranspiration, latent heat, sensible heat, runoff, evaporative fraction, terrestrial water storage anomaly
 - albedo, surface upward SW radiation, surface net SW radiation, surface upward LW radiation, surface net LW radiation, surface net radiation
 - surface air temperature, precipitation, surface relative humidity, surface downward
 SW radiation, surface downward LW radiation
- Graphics and scoring system
 - annual mean, bias, relative bias, RMSE, seasonal cycle phase, spatial distribution, interannual variability, variable-to-variable
 - Global maps, time series plots averaged over specific regions, individual measurement sites, functional relationships

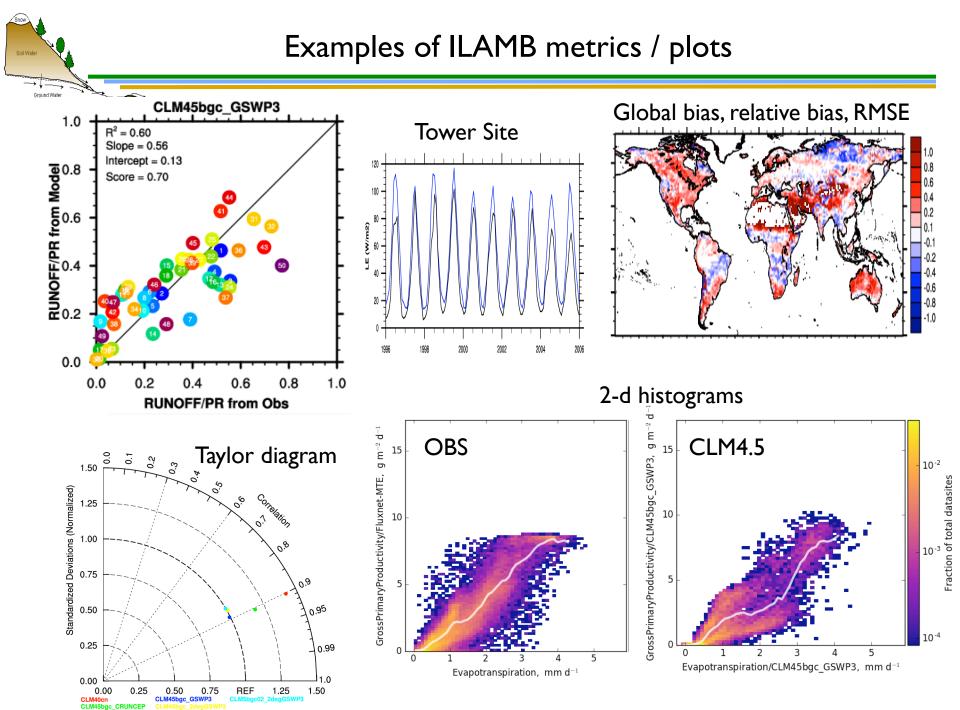
Global Variables (Info for Weightings)

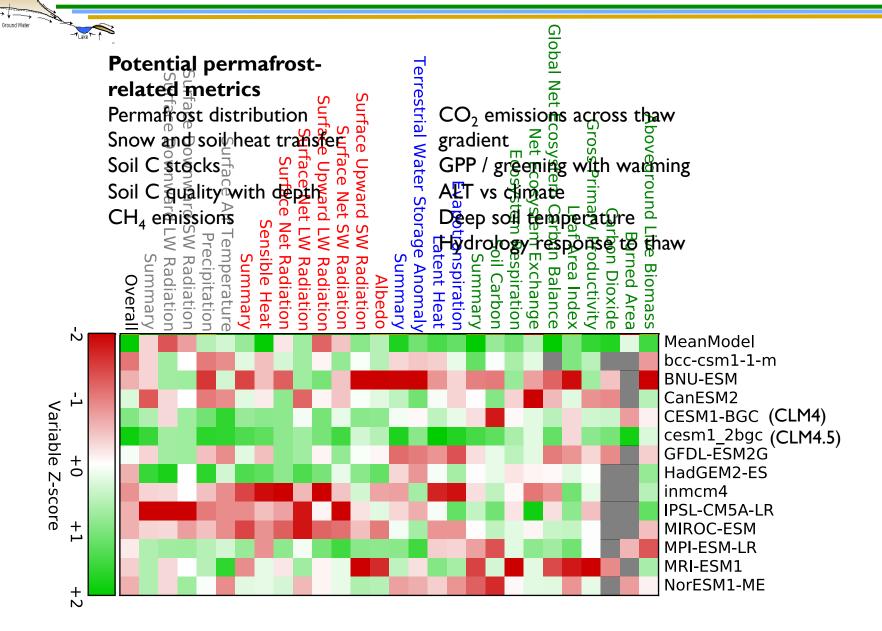
Snm

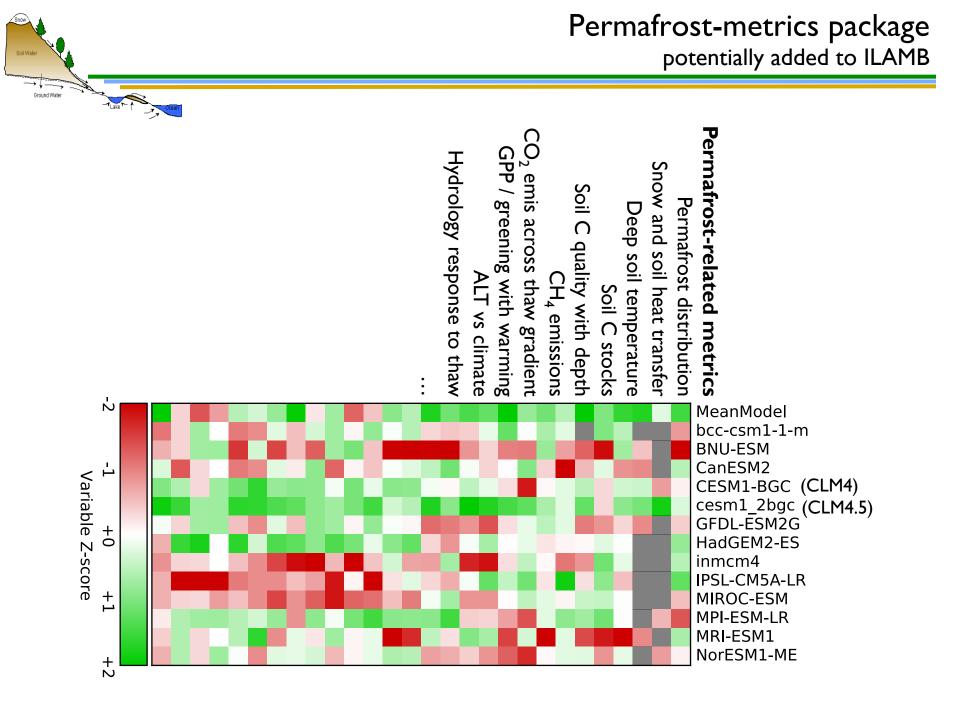
Ground Water

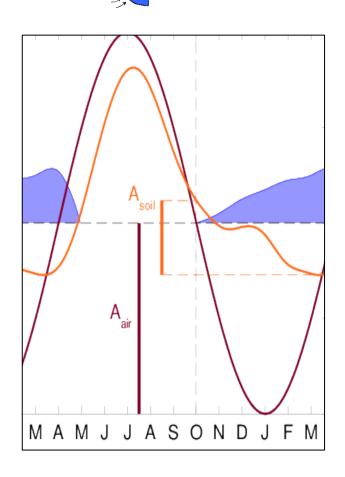
	MeanModel	bcc-csm1-1-m	BNU-ESM	CanESM2	CESM1-BGC	GFDL-ESM2G	HadGEM2-ES	inmcm4	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	MRI-ESM1	NorESM1-
Live Biomass Carbon	0.73	0.68	0.33	0.65	0.60	0.62	0.72	0.50	0.56	0.62	0.58	0.56	0.57
Burned Area	0.38				0.37	•	-	-	-		0.38	-	0.38
Carbon Dioxide	0.85	-	0.65	0.65	0.78	0.65	-	-	-	0.79	0.68	0.68	0.75
Gross Primary Productivity	0.77	0.72	0.73	0.64	0.70	0.67	0.68	0.70	0.67	0.69	0.69	0.53	0.70
Leaf Area Index	0.66	0.66	0.41	0.60	0.53	0.49	0.59	0.68	0.66	0.62	0.68	0.43	0.50
Global Net cosystem Carbon Balance	0.58	-	0.38	0.27	0.38	0.18	-	0.46	0.25	0.38	0.42	0.27	0.40
Net Ecosystem Exchange	0.49	0.47	0.47	0.39	0.48	0.49	0.46	0.44	0.53	0.48	0.50	0.48	0.48
Ecosystem Respiration	0.75	0.72	0.72	0.65	0.67	0.71	0.66	0.70	0.67	0.68	0.68	0.47	0.66
Soil Carbon	0.55	0.50	0.42	0.56	0.38	0.51	0.51	0.53	0.57	0.53	0.41	0.53	0.39
Summary	0.64	0.62	0.51	0.55	0.55	0.54	0.60	0.56	0.55	0.59	0.55	0.50	0.54
vapotranspiration	0.75	0.73	0.72	0.72	0.73	0.70	0.74	0.69	0.75	0.70	0.73	0.73	0.72
Evaporative Fraction	0.84	0.76	0.77	0.81	0.81	0.75	0.81	0.81	0.72	0.75	0.75	0.80	0.79
Latent Heat	0.80	0.76	0.77	0.77	0.78	0.74	0.77	0.72	0.77	0.75	0.76	0.78	0.76
Runoff	0.61	0.59	0.60	0.58	0.64	0.59	-	0.62	0.57	0.56	0.66	0.70	0.62
Sensible Heat	0.76	0.69	0.70	0.71	0.75	0.69	0.75	0.66	0.69	0.69	0.69	0.72	0.72
Terrestrial Water Storage Anomaly	0.38	0.37	0.36	0.38	0.38	0.38	-	0.38	0.37	0.38	0.38	0.38	0.38
Summary	0.68	0.65	0.65	0.66	0.67	0.64	0.77	0.64	0.64	0.63	0.66	0.68	0.66
Albedo	0.72	0.71	0.61	0.71	0.73	0.69	0.74	0.67	0.71	0.67	0.73	0.64	0.72
Surface Upward SW Radiation	0.77	0.74	0.67	0.74	0.78	0.74	0.77	0.74	0.73	0.72	0.78	0.67	0.76
Surface Net SW Radiation	0.84	0.86	0.84	0.85	0.86	0.86	0.86	0.84	0.82	0.83	0.87	0.85	0.85
Surface Upward LW Radiation	0.89	0.91	0.91	0.91	0.92	0.91	0.92	0.89	0.90	0.91	0.92	0.91	0.91
Surface Net LW Radiation	0.81	0.82	0.81	0.79	0.81	0.81	0.83	0.80	0.78	0.78	0.81	0.81	0.81
Surface Net Radiation	0.78	0.79	0.76	0.80	0.80	0.81	0.80	0.74	0.77	0.77	0.81	0.78	0.80
Summary	0.80	0.80	0.77	0.80	0.81	0.80	0.82	0.77	0.78	0.78	0.82	0.78	0.81
Surface Air Temperature	0.87	0.87	0.85	0.85	0.88	0.85	0.87	0.85	0.87	0.85	0.88	0.88	0.87
Precipitation	0.71	0.69	0.67	0.69	0.72	0.69	0.73	0.69	0.69	0.69	0.72	0.70	0.70
Surface Relative Humidity	0.81		0.80	0.76	0.82	•	-	0.79	0.82		-	0.83	0.81
SW Radiation	0.86	0.88	0.87	0.87	0.88	0.87	0.87	0.87	0.83	0.86	0.88	0.86	0.88
urface Downward LW Radiation	0.89	0.92	0.91	0.91	0.92	0.92	0.92	0.90	0.89	0.91	0.93	0.91	0.91
Summary	0.82	0.83	0.81	0.80	0.83	0.82	0.84	0.81	0.81	0.82	0.84	0.83	0.82
Overall	0.69	0.54	0.59	0.61	0.64	0.57	0.48	0.58	0.57	0.59	0.61	0.59	0.63

Notes: 4 Categories are divided: Ecosystem and Carbon Cycle, Hydrology and Turbulent Flux, Radiation and Energy Cycle, and Forcings.

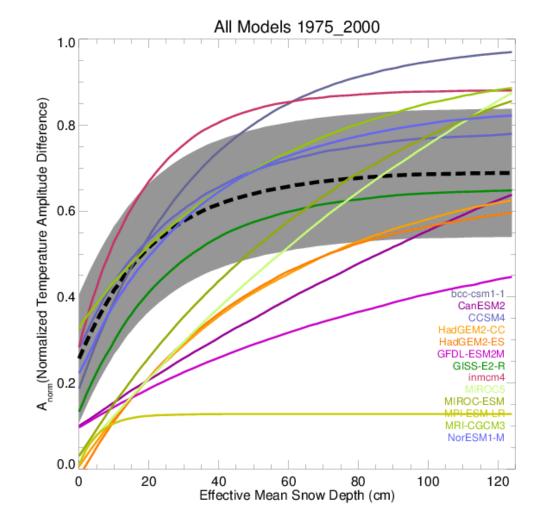




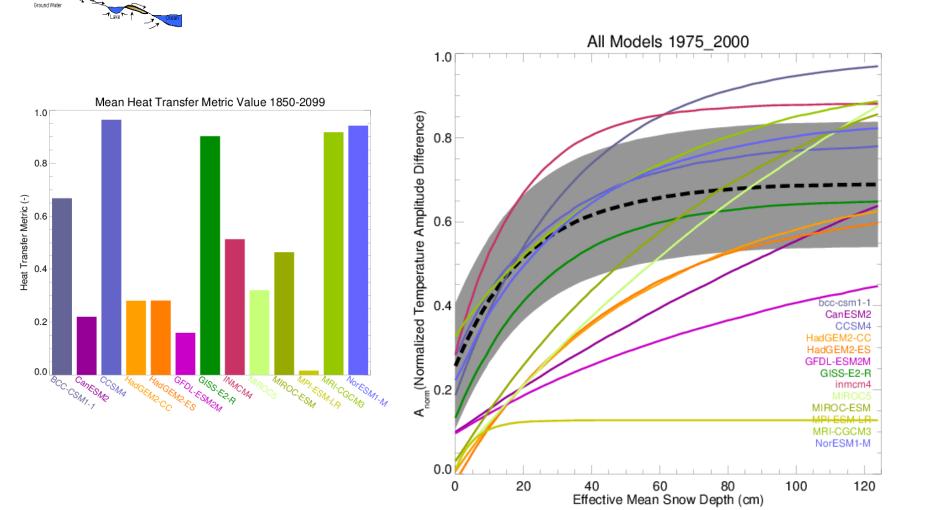



International LAnd Model Benchmarking (ILAMB) package

scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, +



Process-oriented metrics: heat transfer through snow



Snow

Ground Water

Process-oriented metrics: heat transfer through snow

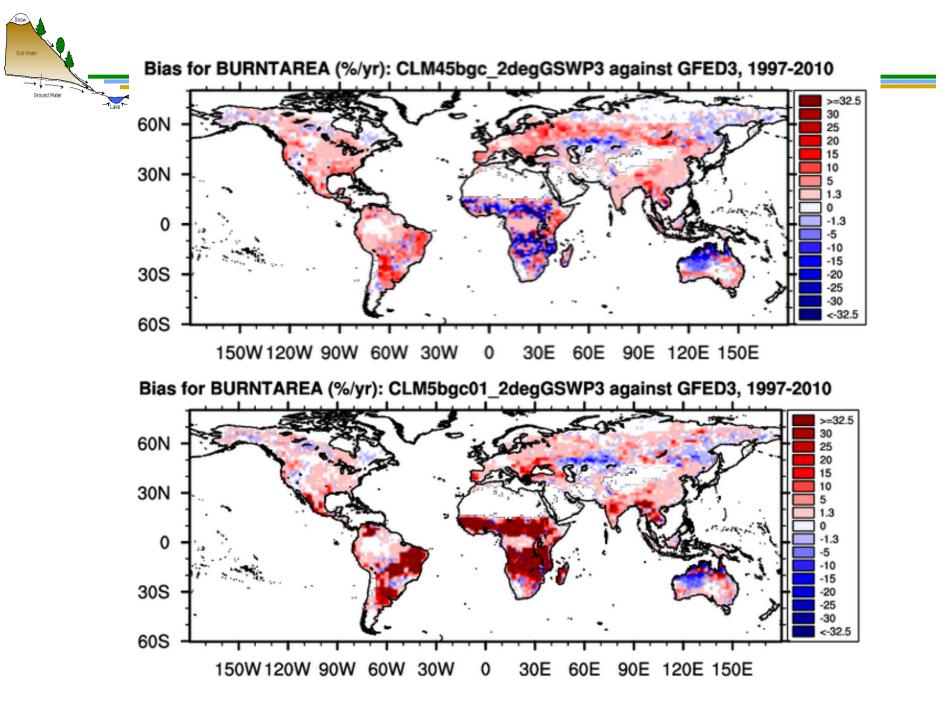
Snow

- ILAMB useful tool for model development and assessment
 - Along with tower site simulations, other diagnostics packages, scientific insight and intuition, case studies, etc.
- Provides quick and comprehensive comparison against growing set of observations and metrics
- Future development of ILAMB to enhance utility in model development
 - Parallelization
 - Compare against years outside observational period (e.g. 1850 control)

Global Variables (Info for Weightings)

Ground Water

TLake T-

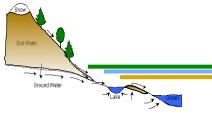

	CLM45bgc_2degGSWP3	CLM5bgc01_2degGSWP3
Aboveground Live Biomass	0.71	0.64
Burned Area	0.51	0.42
Gross Primary Productivity	0.75	0.72
Leaf Area Index	0.57	0.58
Global Net Ecosystem Carbon Balance	0.47	0.45
Net Ecosystem Exchange	0.49	0.51
Ecosystem Respiration	0.73	0.70
Soil Carbon	0.56	0.58
Summary	0.60	0.58

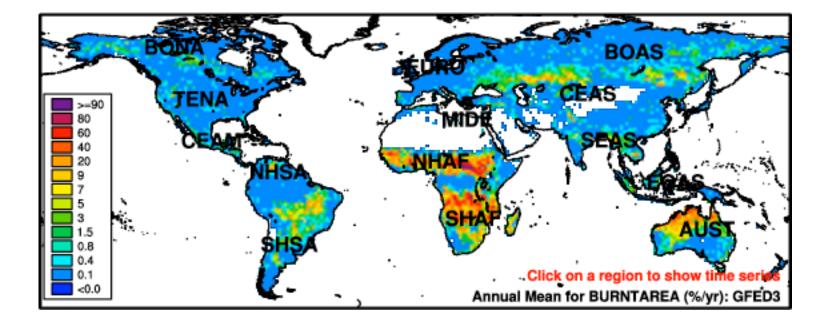
Soll Water Ground Water

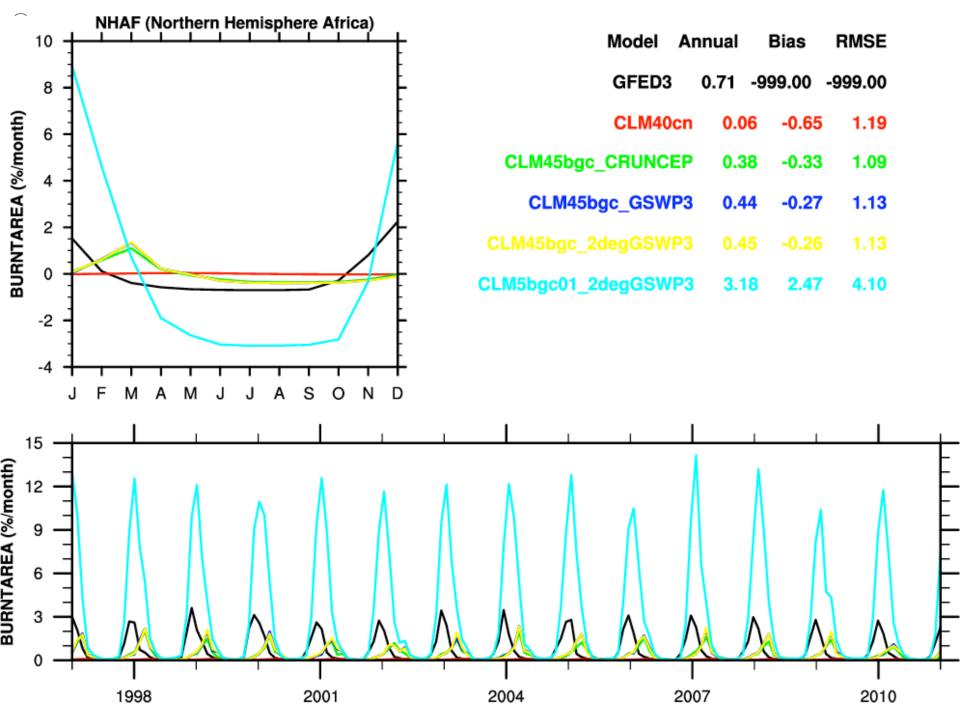
Diagnostic Summary for Burned Area: Model vs. GFED3

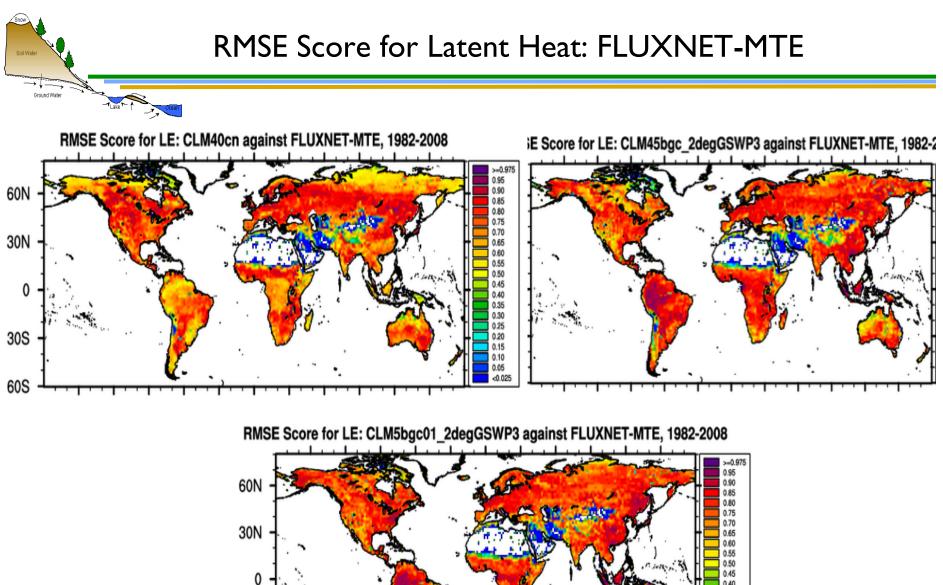
	Global Patterns				Regional and Seasonal Patterns	Scoring (<u>Info</u>)					
	<u>Annual</u> <u>Mean</u> (Mha/yr)	<u>Bias</u> (Mha/yr)	<u>RMSE</u> <u>(Mha/mon)</u>	Phase Difference (months)	<u>Regional</u> Means	<u>Global</u> <u>Bias</u>	<u>RMSE</u>	<u>Seasonal</u> <u>Cycle</u>	<u>Spatial</u> Distribution	<u>Interannual</u> <u>Variability</u>	<u>Overall</u>
Benchmark [Giglio et al. (2010)]	<u>362.8</u>	-	-	<u>0.0</u>	access to plots	-	-	-	-	-	-
CLM45bgc_2degGSWP3	<u>378.8</u>	<u>16.1</u>	<u>85.5</u>	<u>1.6</u>	access to plots	<u>0.52</u>	<u>0.40</u>	<u>0.72</u>	<u>0.48</u>	<u>0.53</u>	<u>0.51</u>
CLM5bgc01_2degGSWP3	<u>1578.9</u>	<u>1216.1</u>	<u>208.9</u>	<u>0.5</u>	access to plots	<u>0.32</u>	<u>0.27</u>	<u>0.86</u>	<u>0.26</u>	<u>0.52</u>	<u>0.42</u>

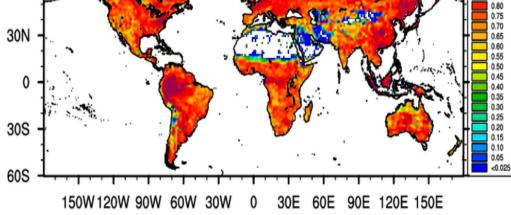
Notes: In calculating overall score, rmse score contributes double in comparison with all other scores.

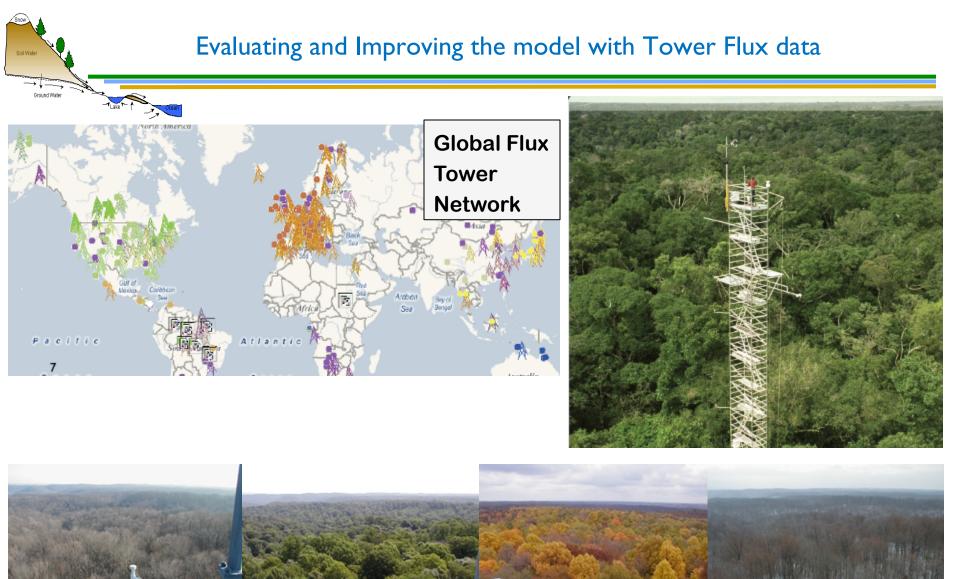


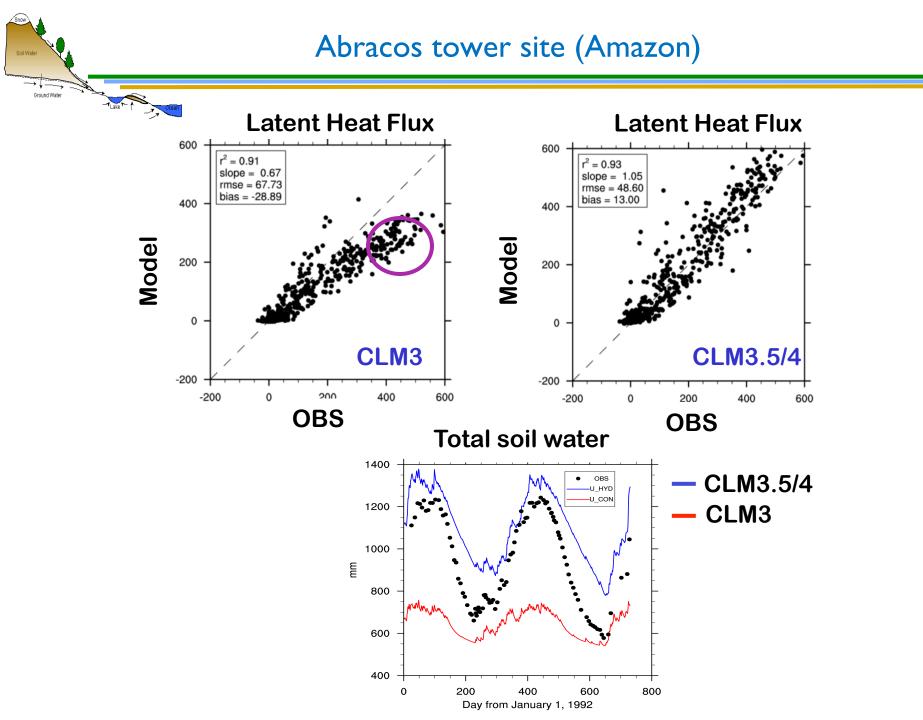

Soll Water Ground Water


Diagnostic Summary for Burned Area: Model vs. GFED3


	Global Patterns				Regional and Seasonal Patterns	Scoring (<u>Info</u>)					
	<u>Annual</u> <u>Mean</u> (Mha/yr)	<u>Bias</u> (Mha/yr)	<u>RMSE</u> <u>(Mha/mon)</u>	Phase Difference (months)	<u>Regional</u> Means	<u>Global</u> <u>Bias</u>	<u>RMSE</u>	<u>Seasonal</u> <u>Cycle</u>	<u>Spatial</u> Distribution	<u>Interannual</u> <u>Variability</u>	<u>Overall</u>
Benchmark [Giglio et al. (2010)]	<u>362.8</u>	-	-	<u>0.0</u>	access to plots	-	-	-	-	-	-
CLM45bgc_2degGSWP3	<u>378.8</u>	<u>16.1</u>	<u>85.5</u>	<u>1.6</u>	access to plots	<u>0.52</u>	<u>0.40</u>	<u>0.72</u>	<u>0.48</u>	<u>0.53</u>	<u>0.51</u>
CLM5bgc01_2degGSWP3	<u>1578.9</u>	<u>1216.1</u>	<u>208.9</u>	<u>0.5</u>	access to plots	<u>0.32</u>	<u>0.27</u>	<u>0.86</u>	<u>0.26</u>	<u>0.52</u>	<u>0.42</u>


Notes: In calculating overall score, rmse score contributes double in comparison with all other scores.





Tower flux statistics (15 sites incl. tropical, boreal, mediterannean, alpine, temperate; hourly)

Conund Water		nt Heat ⁻ lux	Sensible Heat Flux			
	r	RMSE (W/m²)	r	RMSE (W/m²)		
CLM3	0.54	72	0.73	91		
CLM3.5	0.80	50	0.79	65		
CLM4SP	0.80	48	0.84	58		

