Vegetation O₃ damage: Impacts on plants & ecosystems

Danica Lombardozzi National Center for Atmospheric Research

Upper Atmosphere

Ozone Layer (Stratospheric Ozone)

Ground-level Ozone (Tropospheric Ozone)

Image taken from International Space Station. Photo credit: NASA

Ozone (O₃) Formation:

Nitrogen Oxides (NO_x)

Volatile Organic Compounds (VOCs)

Sunlight

Ground-level Ozone (O₃)

٠

EPA limit: 70 ppb over 8 hours

Human Sensitivity*: ~60 ppb Plant Sensitivity*: ~40 ppb

* There is a lot of variation in human and plant sensitivities. Some humans and plants are sensitive below these concentrations, while others are not affected until concentrations are much higher.

⁴ Potato, var. LaChipper

August 4 Potato, var. LaChipper

August 4 Potato, var. LaChipper

August 28

September 9

How does ozone pollution change:

1. Leaf processes?

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

3. Crop yields?

How does ozone pollution change:

1. Leaf processes?

Leaf Cross-section

Leaf Cross-section

Photosynthesis (µmol CO2 m² s⁻¹)

Is this pattern similar for all plant types?

Mean photosynthetic change = -21% *

Mean conductance change = -11%

127 studies sampled, only 15 contain data for other plant types.

Data adapted from Lombardozzi et al., 2013 BGS

Similar to Wittig et al. 2007, Plant Cell Environ; Feng et al. 2008 GCB; Morgan et al. 2003, Plant Cell Environ

Leaf Cross-section

* Bortier et al. 2000, New Phtyol; Francini et al. 2007, Environ Exp Bot; Fiscus et al. 1997, J. Exp Bot; Heagle et al. 1996 J. Environ Qual; Noormets et al. 2001, Plant Cell Environ; Sharma et al. 2003, Ekologia, Lombardozzi et al. 2012, Oceologia, Lombardozzi et al. 2014, Biogeosciences

Leaf Cross-section

* Bortier et al. 2000, New Phtyol; Francini et al. 2007, Environ Exp Bot; Fiscus et al. 1997, J. Exp Bot; Heagle et al. 1996 J. Environ Qual; Noormets et al. 2001, Plant Cell Environ; Sharma et al. 2003, Ekologia, Lombardozzi et al. 2012, Oceologia, Lombardozzi et al. 2014, Biogeosciences

Lombardozzi et al., 2012 Oecologia

Lombardozzi et al., 2012 Oecologia

Lombardozzi et al., 2012 Oecologia

Lombardozzi et al., 2012 Oecologia

Lombardozzi et al., 2012 Oecologia

How does ozone pollution change:

- 1. Leaf processes?
- Photosynthesis decreases more than conductance
- Models must be adjusted properly to account for the differences in photosynthetic and stomatal responses
How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

Community Earth System Model

Leaf Cross-section

Mean photosynthetic change = -21% *

Mean conductance change = -11%

127 studies sampled, only 15 contain data for other plant types.

Data adapted from Lombardozzi et al., 2013 BGS

Similar to Wittig et al. 2007, Plant Cell Environ; Feng et al. 2008 GCB; Morgan et al. 2003, Plant Cell Environ

Lombardozzi et al. 2013 BGS

Lombardozzi et al. 2013 BGS

Lombardozzi et al. 2013 BGS

Change in **Photosynthesis** due to O₃ (%) (change in C gain)

Lombardozzi et al. 2015 J. Climate

Lombardozzi et al. 2015 J. Climate

Lombardozzi et al. 2015 J. Climate

How does ozone pollution change:

1. Leaf processes?

- 2. Global terrestrial processes?
- Global C gain decreases more than H₂O lost
- Hydrological impacts, including increasing surface runoff

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

3. Crop yields?

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

Estimated 65% increased demand

CLM-Crop

Corn*

Wheat

Sugarcane

Soy*

Cotton

* Temperate and tropical varieties

Fertilize (N only)

Simulation Name	Physical Climate	CO ₂	O 3
Constant Forcings			
Climate Change			
CO ₂ Fertilization			
O₃ Change			

Simulation Name	Physical Climate	CO2	O 3
Constant Forcings	2006	2006	None
Climate Change			
CO ₂ Fertilization			
O₃ Change			

Simulation Name	Physical Climate	CO ₂	03
Constant Forcings	2006	2006	None
Climate Change	Transient	2006	None
CO ₂ Fertilization			
O₃ Change			
			Transient = RCP 8.5

Simulation Name	Physical Climate	CO ₂	O 3
Constant Forcings	2006	2006	None
Climate Change	Transient	2006	None
CO ₂ Fertilization	Transient	Transient	None
O₃ Change			
			Transient - BCP 8

Simulation Name	Physical Climate	CO ₂	03
Constant Forcings	2006	2006	None
Climate Change	Transient	2006	None
CO ₂ Fertilization	Transient	Transient	None
O₃ Change	Transient	Transient	Transient
			Transient = RCP 8.5

\triangle 2100 Average Crop Yield

\triangle 2100 Average Crop Yield

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

3. Crop yields?

- Yield depends on region and crop type
- O₃ and climate: decrease future yields
- CO2: increases future yields, and its effect is overestimated

How does ozone pollution change:

1. Leaf processes?

2. Global terrestrial processes?

3. Crop yields?

- Yield depends on region and crop type
- O₃ and climate: decrease future yields
- CO2: increases future yields, and its effect is overestimated

Future crop yields likely won't meet the estimated 65% increased demand.

Damages photosynthesis more than conductance

- Damages photosynthesis more than conductance
- Changes global-scale water and carbon exchange

- Damages photosynthesis more than conductance
- Changes global-scale water and carbon exchange
- Decreases crop yields

Danica Lombardozzi

Questions for today:

How does ozone pollution change:

Climate & chemistry feedbacks?

Community Earth System Model

Change in Latent Heat Flux due to O₃ (W m⁻²)

Arnold, Lombardozzi, et al. In Prep

Change in Latent Heat Flux due to O₃ (W m⁻²)

Change in Sensible Heat Flux due to O₃ (W m⁻²)

Arnold, Lombardozzi, et al. In Prep

Change in **Surface Temperature** due to O₃ (K)

Regional **Temperature** change due to O₃ (K)

Arnold, Lombardozzi, et al. In Prep

6% [O₃] increase in Northern Hemisphere

Questions for today:

How does ozone pollution change:

Climate & chemistry feedbacks?
Increased surface & air temperatures
Increased [O₃] in the northern hemisphere

Vegetation O₃ damage:

- Damages photosynthesis more than conductance
- Changes global-scale water and carbon exchange
- Increases surface temperature through changing heat fluxes
- Increases ozone concentrations
- Decreases crop yields

Engaging Communities in Citizen Science

COLORADO MATTERS

How Plants Show The Strains Of Ozone Pollution

BY MICHAEL DE YOANNA JUL 29, 2014

()) LISTEN Audio: NCAR Researcher Danica Lombardozzi Speaks With Ryan Warner

Jumbo screens along Front Range highways have warned drivers a dozen times so far this year about high levels of ozone. But there's another way to tell if the invisible gas, also known as smog, is in the air: Check your garden.

O₃-Fire Interactions

PROBLEMS &

Uncertainty in parameterization

- 95% available data is for temperate plants
- No strong correlations between O₃ dose & physiological damage
- High sensitivity to O₃
 dose threshold

Lombardozzi et al. 2014

Collaborators

Gordon Bonan

Jed Sparks

Dave Lawrence

Peter Hess

Sam Levis

Steve Arnold

Amos Tai

Mehliyar Sadiq

Climatological Present Day Ozone

Change in Ozone Concentrations between 2100 and 2006

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Change in Temperature (°C)

-250 -200 -150 -100 -50 0 50 100 150 200 250 Change in Precipiation (mm yr⁻¹)

Change = 2100 - 2006 (RCP8.5)

Forcing Impact Calculations	
Climate Change Impact	Constant Forcings - Δ Climate Change
CO ₂ Fertilization Impact	ΔCO_2 Fertilization - $\Delta Climate$ Change
O ₃ Impact	ΔO_3 Change - ΔCO_2 Fertilization
Combined Impact	ΔO_3 Change - Constant Forcings

Comparison of observed vs modeled GPP and LH Flux

Arnold, Lombardozzi et al. In Prep

Diana Rypkema, Cornell University (now at Stanford)

Is the response the same for all types of plants?

Browsed >500 manuscripts returned by Web of Science keyword search

Screened all studies for photosynthesis and stomatal conductance responses

Proportion of Land Area

Data from Grace, J. (2004). Journal of Ecology, 92(2), 189-202.

Proportion of Land Area

Proportion of Available O3 Response Data

Data from Grace, J. (2004). Journal of Ecology, 92(2), 189-202.

Data from Lombardozzi et al. (2012). 8GS

>-10 -8 -6 -4 -2 <-1 Change in WUE due to O_3 (%)

Change in Top of Atmosphere **Shortwave Radiation** due to O₃ (W m⁻²)

Change in Top of Atmosphere Longwave Radiation due to O₃ (W m⁻²)

Arnold, Lombardozzi et al. In Prep