Future Directions: Subgrid Hydrology in CLM

Justin Perket^{1,2}, Martyn Clark¹, Dave Lawrence¹, Ying Fan Reinfelder², Sean Swenson¹

¹NCAR ² RUTGERS

CUAHSI-NCAR collaboration

 CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.)

- CUAHSI / NCAR initiative to improve representation of hydrologic processes in ESMs
 - Hillslope hydrology
 - Plant hydrodynamics

Nater Resources Research				
REVIEW ARTICLE	Improving the representation of hydrologic processes in Earth			
0.1002/2015WR017096	System Models			
Special Section:	Martyn P. Clark ¹ , Ying Fan ² , David M. Lawrence ¹ , Jennifer C. Adam ³ , Diogo Bolster ⁴ , David J. Gochis ¹ ,			
The 50th Anniversary of Water	Richard P. Hooper ⁵ , Mukesh Kumar ⁶ , L. Ruby Leung ⁷ , D. Scott Mackay ⁸ , Reed M. Maxwell ⁹ ,			
Resources Research	Chaopeng Shen ¹⁰ , Sean C. Swenson ¹ , and Xubin Zeng ¹¹			

•How can we improve climate predictions by advancing representation of the terrestrial water cycle?

- •How can we improve climate predictions by advancing representation of the terrestrial water cycle?
- •How does the hydrologic influence of land-atmosphere fluxes affect climate?

- •How will natural and anthropogenic forcings affect:
 - •Stores (e.g., canopy, snowpack, soil moisture, groundwater, rivers, lakes)?
 - •Fluxes (e.g., evaporation, transpiration, snowmelt, infiltration, runoff, subsurface lateral flow, river discharge)?

•How can climate influence freshwater availability? Vegetation stress?

Motivation

- Need efficient representation of hillslope hydrology dynamics (with subgrid variability) for global water cycle interactions with climate
- Lateral subsurface flow critical to represent terrestrial water connectivity, but missing from most earth system models

CLM 5.0 Subgrid Hierarchy

CLM 5.0 Subgrid Hierarchy

CLM Subgrid Hierarchy with Hillslope Representation

Implemented Intra-Gridcell Hillslope Representation

- Gridcell level assumes role of drainage basin
- Few representative hillslopes per basin (if not singular)
- Lateral connections between neighboring columns in hillslope

CLM Hierarchy with Hillslope Representation

Implemented Hillslope Lateral Flow

- Columns have distinct:
 - Elevations
 - Slopes
 - Surface areas
 - Bedrock depths
- Lateral saturated flow between columns based on:
 - Topographic height
 - Water table slope

Implemented Hillslope Lateral Flow

$$Q_c^{out} = \frac{-K_0 * D_{soil} * tan(slope)}{n} \left(1 - \frac{D_{table}}{D_{soil}}\right)^n$$

- Checks to prevent soil moisture < specific yield in any layer
- Withdraws from deeper layers if needed
- Q_c^{in} adds to water table layer

$$Q_{c}^{net} = Q_{c}^{out} - \frac{Area_{(c-1)}}{Area_{c}}Q_{c-1}^{out}$$

Implemented Hillslope Lateral Flow

•Now the vegetated land unit kinda looks like...

- •Constant slope with 700 hour constant rain
- •Saturated flow downhill (kinematic wave)
- Compared to simple analytical & numerical solutions

•Constant slope with 700 hour constant rain

•Saturated flow downhill (kinematic wave)

 Compared to simple analytical & numerical solutions

- •Constant slope w/ 700 hour constant rain
- Increased water
 storage, higher water
 table going downhill
- •Compares well with analytical solutions for matching hillslope geometry and soil properties

Reynolds Creek Watershed

 Compared Single Point CLM w/ site forcing to Critical Zone Observatory measurements

criticalzone.org/reynolds/

Topographic Sensitivity

- Control:
 - 1m soil depth
 - 10% slope
- 2 columns: upland & lowland
- Trial Series 1: converging basin

		Column	
Trial #	Parameter Varied	Upslope	Downslope
1a	Area (relative to 1st col.)	1	1/2
1b	Area (relative to 1st col.)	1	1/4
1c	Area (relative to 1st col.)	1	1/8

Shrinking Downslope Area

Parameter Variation: Converging Area

- Representative Year 2004, cumulative fluxes
- Control:
 - 1m soil depth
 - 10 % slope
- Converge to 1/2th, 1/4th, 1/8th area

Topographic Sensitivity

- Control:
 - 1m soil depth
 - 10 % slope
- 2 columns: upland & lowland
- Trial Series 2: Slowing slope downhill

		Column	
Trial #	Parameter Varied	Upslope	Downslope
1a	Area (relative to 1st col.)	1	1/2
1b	Area (relative to 1st col.)	1	1/4
1c	Area (relative to 1st col.)	1	1/8
2a	Baseflow strength	1	0.5
2b	Baseflow strength	1	0.25
2c	Baseflow strength	1	0.125
2d	Baseflow strength	1	0.01

Parameter Variation: Subsurface Flow / Slope

- Representative Year 2004, cumulative fluxes
- Control:
 - 1m soil depth
 - 10 % slope
- 1/2, 1/4, 1/8, 1/100 lateral flow

Topographic Sensitivity

- Control:
 - 1m soil depth
 - 10 % slope
- Trial Series 3: deepening soil downhill

		Column	
Trial #	Parameter Varied	Upslope	Downslope
1a	Area (relative to 1st col.)	1	1/2
1b	Area (relative to 1st col.)	1	1/4
1c	Area (relative to 1st col.)	1	1/8
2a	Baseflow strength	1	0.5
2b	Baseflow strength	1	0.25
2c	Baseflow strength	1	0.125
2d	Baseflow strength	1	0.01
3a	Soil Depth (m)	1	2
3b	Soil Depth (m)	1	4
3c	Soil Depth (m)	1	8

Control

Deeper Downslope Soil

Parameter Variation: Soil Depth

- Representative Year 2004, cumulative fluxes
- Control:
 - 1m soil depth
 - 10 % slope
- Depth to bedrock: 2m, 4m, 8m

Reynolds Creek Mountain East

 Eddy flux towers, streamflow and SWE observations

Reynolds Creek Mountain East

 Single Column CLM gives low lowland evapotranspiration compared to obs.

Reynolds Creek Mountain East

 CLM w/ multi-column hillslope increases ET

Reynolds Creek Mountain East

Next Steps

•Columns having unique vegetation

Next Steps

•Columns having unique vegetation

Next Steps

- Columns having unique vegetation
- •Multi-slope basins (with different topographies and effective forcings)
- •Global simulations with Digital Elevation Model-derived datasets

