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Open Hydroclimatology Questions

*How can we improve climate predictions by advancing
representation of the terrestrial water cycle?

Winter et al., 1998



Open Hydroclimatology Questions

*How can we improve climate predictions by advancing
representation of the terrestrial water cycle?

*How does the hydrologic influence of land-atmosphere fluxes
affect climate?




Open Hydroclimatology Questions

*How will natural and anthropogenic
forcings affect:

Stores (e.g., canopy, snowpack, soil
moisture, groundwater, rivers, lakes)?

*Fluxes (e.g., evaporation, transpiration,
snowmelt, infiltration, runoff, subsurface
lateral flow, river discharge)?




Open Hydroclimatology Questions

*How can climate influence freshwater availability?
Vegetation stress?




Motivation

* Need efficient representation of
hillslope hydrology dynamics (with

R
subgrid variability) for global water £

cycle interactions with climate P

 Lateral subsurface flow critical to
represent terrestrial water
connectivity, but missing from
most earth system models




CLM 5.0 Subgrid Hierarchy
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CLM 5.0 Subgrid Hierarchy

PFT3 PFT4 ...




CLM Subgrid Hierarchy with Hillslope
Representation
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Land units
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Implemented Intra-Gridcell Hillslope

Representation
e Gridcell level assumes CLM Hierarchy with Hillslope Representation
role of drainage basin Gridcell

Land units

* Few representative
hillslopes per basin (if not
singular)

* Lateral connections
between neighboring
columns in hillslope
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Implemented Hillslope Lateral Flow
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e Columns have distinct:
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e Lateral saturated flow
between columns
based on:

* Topographic height
* Water table slope
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Implemented Hillslope Lateral Flow
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\ Unsaturated moisture < specific yield in any
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Implemented Hillslope Lateral Flow

*Now the
vegetated land

unit kinda looks
like...




Synthetic Test Cases

*Constant slope
with 700 hour
constant rain

*Saturated flow
downbhill
(kinematic wave)

Soil levels

Compared to
simple analytical
& numerical
solutions




Synthetic Test Cases

*Constant slope
with 700 hour
constant rain

*Saturated flow
downbhill
(kinematic wave)

Soil levels

Compared to
simple analytical
& numerical
solutions




Synthetic Test Cases

Soil Moisture Across Hillslope Columns
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Synthetic Test Cases

*Constant slope W/ 700 Hill Top Soil Moisture Across Hillslope Columns
hour constant rain A~ -

o *__ -
*Increased water

storage, higher water
table going downhill

IO‘
q 0.35

*Compares well with
analytical solutions for
matching hillslope
geometry and soil
properties
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Reynolds Creek Watershed

 Compared Single
Point CLM w/ site
forcing to Critical

Zone Observatory
measurements
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Topographic Sensitivity

Column
* COﬂtFOlZ Trial # Parameter Varied Upslope | Downslope
*1m SO” depth la Area (relative to 1st col.) 1 1/2
e 10% slope 1b Area (relative to 1st col.) 1 1/4
1c Area (relative to 1st col.) 1 1/8

e 2 columns: upland
& lowland

* Trial Series 1:
converging basin

Control Shrinking Downslope Area



Parameter

Variation:

Converging
Area

* Representative
Year 2004,
cumulative fluxes

e Control:
* 1m soil depth
* 10 % slope

* Converge to

1/2th, 1/4th, 1/8th
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Topographic Sensitivity

Column
* COﬂtFOlZ Trial # Parameter Varied Upslope | Downslope

*1m SO” depth la Area (relative to 1st col.) 1 1/2

e 10% slope 1b Area (relative to 1st col.) 1 1/4

1c Area (relative to 1st col.) 1 1/8

° 2 columns: upland 2a Baseflow strength 1 0.5
& Iowland 2b Baseflow strength 1 0.25
2c Baseflow strength 1 0.125

2d Baseflow strength 1 0.01

e Trial Series 2:
Slowing slope
downhill

Qout

Control Smaller Downslope Lateral Flow



Parameter

Variation:

Subsurface
Flow / Slope

* Representative Year
2004,
cumulative fluxes

e Control:
* 1m soil depth
* 10 % slope

«1/2,1/4,1/8, 1/100
lateral flow

Downslope Baseflow
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Topographic Sensitivity

e Control:
* 1m soil depth
* 10 % slope

* Trial Series 3:
deepening soil
downhill

Control

Column
Trial # Parameter Varied Upslope | Downslope

la Area (relative to 1st col.) 1 1/2
1b Area (relative to 1st col.) 1 1/4
1c Area (relative to 1st col.) 1 1/8
2a Baseflow strength 1 0.5
2b Baseflow strength 1 0.25
2c Baseflow strength 1 0.125
2d Baseflow strength 1 0.01
3a Soil Depth (m) 1 2
3b Soil Depth (m) 1 4
3c Soil Depth (m) 1 8

Deeper Downslope Soil




Parameter

Variation:
Soil Depth

* Representative
Year 2004,
cumulative fluxes

e Control:
* 1m soil depth
* 10 % slope

e Depth to bedrock:

2m, 4m, 8m

o

Downslope Soil Depth
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Reynolds
Creek
Mountain East

Reynolds Mountain East Observations
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Reynolds
Creek
Mountain East

* Single Column CLM gives
low lowland
evapotranspiration
compared to obs.
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Reynolds
Creek
Mountain East

e CLM w/ multi-column
hillslope increases ET

Precip and Runoff
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Reynolds Creek Mountain East

100 Reynolds Creek Mountain East
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Next Steps

*Columns having unique vegetation




Next Steps

*Columns having unique vegetation

*Multi-slope basins (with different
topographies and effective forcings)

Gridcell C

=
Gridcell D

Gridcell B

=

Gridcell A




Next Steps

*Columns having unique vegetation

*Multi-slope basins (with different
topographies and effective forcings)

*Global simulations with Digital Elevation Model-derived datasets




