

Biosphere-atmosphere interactions in Earth system models

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA

CLM Tutorial 2016

National Center for Atmospheric Research Boulder, Colorado 12 September 2016

Earth system models

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Earth system models use mathematical formulas to simulate the **physical**, **chemical**, and **biological** processes that drive Earth's atmosphere, hydrosphere, biosphere, and geosphere

A typical Earth system model consists of coupled models of the **atmosphere**, **ocean**, **sea ice**, **land**, and **glaciers**

Land is represented by its **ecosystems**, **watersheds**, **people**, and **socioeconomic** drivers of environmental change

The model provides a comprehensive understanding of the processes by which people and ecosystems **affect**, **adapt to**, and **mitigate** global environmental change

Earth system models

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Prominent terrestrial feedbacks

- Snow cover and climate
- Soil moisture-evapotranspiration-precipitation
- Land use and land cover change
- Carbon cycle
- Reactive nitrogen
- Chemistry-climate (BVOCs, O₃, CH₄, aerosols)
- Biomass burning

The Anthropocene

Population of the world, 1950-2050, according to different projection variants (in billion)

Source: United Nations, Department of Economic and Social Affairs, Population Division (2009): World Population

Prospects: The 2008 Revision. New York

Human activities (energy use, agriculture, deforestation, urbanization) and their effects on climate, water resources, and biogeochemical cycles

What is our collective future?

Can we manage the Earth system, especially its ecosystems, to create a sustainable future?

Planetary distress

Habitat loss, NM (UCAR)
Pine beetle, CO (RJ Sangosti/Denver Post)
High Park fire, CO (RJ Sangosti/Denver Post)
Coastal flooding, NC (U.S. Coast Guard)
Texas drought (http://farmprogress.com)
Glacial calving (www.extremeicesurvey.org)
Midway-Sunset oil field, CA (Jim Wilson/The New York Times)

Ecosystems and climate

Near-instantaneous (30min) coupling with atmosphere (energy, water, chemical constituents)

Long-term dynamical processes that control these fluxes in a changing environment (disturbance, land use, succession)

The Community Land Model

Fluxes of energy, water, CO₂, CH₄, BVOCs, and Nr and the processes that control these fluxes in a changing environment

Oleson et al. (2013) NCAR/TN-503+STR (420 pp)

Lawrence et al. (2011) J. Adv. Mod. Earth Syst., 3, doi: 10.1029/2011MS000045

Lawrence et al. (2012) J Climate 25:2240-2260

Spatial scale

1.25° longitude ? 0.9375° latitude (288 ? 192 grid), ~100 km ? 100 km

Temporal scale

- 30-minute coupling with atmosphere
- Seasonal-to-interannual (phenology)
- Decadal-to-century (disturbance, land use, succession)
- Paleoclimate (biogeography)

Landscape dynamics

Biogeophysical processes

Trees have a low albedo

NSF/NCAR C-130 aircraft above a patchwork of agricultural land during a research flight over Colorado and northern Mexico

Colorado Rocky Mountains

a Albedo

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Biogeophysical processes

Trees are tall (aerodynamically rough)

Cowling Arboretum, Carleton College

b Surface roughness

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Biogeophysical processes

Soil moisture and evapotranspiration

2012 drought, Waterloo, NE (Nati Harnik, AP)

c Latent heat flux

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Historical land use & land cover change, 1850-2005

Change in tree and crop cover (percent of grid cell)

Historical land use & land-cover change

- Loss of tree cover and increase in cropland
- ☐ Farm abandonment and reforestation in eastern U.S. and Europe

Forests influences on global climate

The LUCID intercomparison study

Multi-model ensemble (7) of the simulated changes between the pre-industrial time period and present-day

CO₂ + SST + SIC forcing leads to warming

Land-cover change leads to cooling

max 75th

Biogeophysical mechanisms

Model variability

15 CMIP5 models: Change in JJA temperature (°C) with 20th century land-cover change

Twenty-first century land-cover change

Change in crop cover (percent of grid cell)

Change in tree cover (percent of grid cell)

Land management

Forest management

Cumulative percent of grid cell harvested

Lawrence et al. (2012) J Clim. 25:3071-3095

Agricultural management

Tillage
Crop selection
Irrigation
Fertilizer use

8 crop functional types:

Maize (temperate, tropical)
Soybean (temperate, tropical)
Spring wheat

Sugarcane Cotton Rice

Carbon cycle and climate change

Atmospheric CO₂ has increased by 112 ppm (1750-2011) as a balance of:

- Fossil fuel emissions
- Land-use and land-cover change emissions
- Terrestrial and oceanic sinks

How will the global carbon cycle change in the future?

Will the terrestrial biosphere continue to be a carbon sink?

(UCAR)

C4MIP – Climate and carbon cycle

Carbon cycle-climate feedback

11 carbon cycle-climate models of varying complexity

CO₂ fertilization enhances carbon uptake, diminished by decreased productivity and increased soil carbon loss with warming

Large model spread (uncertainty):

■ 17 Pg C yr⁻¹ difference in land uptake at 2100

CMIP5 model uncertainty

11 Earth system models with RCP8.5

CO₂ fertilization enhances C uptake, diminished by C loss with warming, N cycle reduces CO₂ fertilization

Large uncertainty in cumulative land uptake ($\Delta 525 \text{ Pg C}$)

CMIP5 model uncertainty

Uncertainty in land carbon uptake due to differences among models is considerably larger than the spread across scenarios

Model uncertainty

Hawkins & Sutton (2009) BAMS 90:1095-1107

IPCC (2013) Cli-mate Change 2013: The Physical Science Basis

Process understanding improves models

Leaf to canopy scaling

Bonan et al. (2011) JGR, doi:10.1029/2010JG001593

$CLM4cn \rightarrow CLM4.5bgc$

Koven et al. (2013) Biogeosciences 10:7109-7131

Reactive nitrogen

Erisman et al. (2011) Curr. Opin. Environ. Sustain. 3:281-290 Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press)

Nitrogen addition alters the composition and chemistry of the atmosphere, and changes the radiative forcing. The net radiative forcing varies regionally.

Chemistry – climate interactions

- Loss of forests and increase in croplands reduces global BVOC emissions
- Decreases ozone, CH₄, and secondary organic aerosols
- Net radiative forcing is –0.11 W m⁻²

Global climate effects of historical cropland expansion

Unger (2014) Nature Clim. Change 4:907-910

Biomass burning and dust

Scattering and absorbing BVOCs Smoke Dust

Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Atmospheric radiation Atmospheric chemistry Surface albedo

Dust plume off Africa

Smoke plume off California

Terrestrial ecosystems and geoengineering

Green solutions to climate change mitigation

Biogeophysics and biogeochemistry

(a) Biogeophysical

(b) Biogeochemical

(c) Net

 ΔT (°C)

0.01 -0.01-0.1 -0.2 -0.3

-0.4 -0.5

<u>Historical land use & land-cover change</u>

- Biogeophysical processes decrease annual mean temperature (albedo)
- Deforestation releases carbon (warms temperature)
- Biogeochemical warming exceeds biogeophysical cooling

Prevailing paradigm

The dominant competing signals from historical deforestation are an increase in surface albedo countered by carbon emission to the atmosphere

Afforestation over the 21st century

Areas of the world that are presently occupied by cropland but which could potentially support forests were allowed to be afforested

Biogeophysical warming is prominent in northern high latitudes, where the warming from the lower albedo is important and initiates loss of sea ice

Afforestation increases the land carbon uptake over the twenty-first century and reduces atmospheric CO_2 compared with the control simulation

Net radiative forcing

Consequences of boreal afforestation

Spracklen et al. (2008) Phil. Tran. R. Soc. A 366:4613-4626

Forests and climate change

Multiple competing influences of forests – albedo, ET, C, and also Nr, aerosols

Modeling caveats

CLM is just a starting point for the science. It is not the science itself

- Easy to run the model and get an answer
- Much harder to understand why you got that answer
- CLM is a very complex, multidisciplinary model

Breadth and complexity of land surface models

Many paths to reduce model uncertainty

Model intercomparisons (MIPs)

CMIP6: carbon cycle, land use, land-atmosphere coupling, ...
Range of plausible outcomes, but more models ≠ better results

Model benchmarking

Comprehensive model evaluation against observations

Real-world experiments and models

FACE, N addition

Model-data fusion

Data assimilation, parameter estimation

"Discover" critical missing process

Add another process that is ecologically important but poorly known at the global scale. Tune a key parameter to get a good simulation.

Model intracomparison

Focus on model structural uncertainty to identify processes contributing to uncertainty

Model hierarchy

CLM

Process models (multilayer canopy, MIMICS)
Simple land models (Marysa Lague)