

Modeling terrestrial ecosystems: Biogeophysics & canopy processes

Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA

CLM Tutorial 2016

National Center for Atmospheric Research Boulder, Colorado 12 September 2016

NCAR is sponsored by the National Science Foundation

Role of land surface in Earth system models

- Provides the biogeophysical boundary conditions at the land-atmosphere interface
 - e.g. albedo, longwave radiation, turbulent fluxes (momentum, sensible heat, latent heat, water vapor)
- Partitions available energy (net radiation) at the surface into sensible and latent heat flux, soil heat storage, and snow melt
- Partitions rainfall into runoff, evapotranspiration, and soil moisture
 - Evapotranspiration provides surface-atmosphere moisture flux
 - River runoff provides freshwater input to the oceans
- Provides the carbon fluxes at the surface (photosynthesis, respiration, fire, land use)
- Updates state variables which affect surface fluxes
 - e.g. snow cover, soil moisture, soil temperature, vegetation cover, leaf area index, vegetation and soil carbon and nitrogen pools
- Other chemical fluxes (CH₄, Nr, BVOCs, dust, wildfire, dry deposition)
- Land surface model cost is actually not that high (~10% of fully coupled model)

Role of land surface in Earth system models

The land surface model solves (at each timestep)

Surface energy balance (and other energy balances, e.g. in canopy, snow, soil)

S? + L? = S? + L? + ?E + H + G

- S?, S? are down(up)welling solar radiation
- L?, L? are down(up)welling longwave radiation
- ? is latent heat of vaporization, E is evapotranspiration
- H is sensible heat flux
- G is ground heat flux

Surface water balance (and other water balances such as snow and soil water)

 $P = (E_{S} + E_{T} + E_{C}) + (R_{Surf} + R_{Sub-Surf}) + \Delta SM / \Delta t$

- P is rainfall
- E_s is soil evaporation, E_T is transpiration, E_c is canopy evaporation
- R_{Surf} is surface runoff, R_{Sub-Surf} is sub-surface runoff
- Δ SM / Δ t is the change in soil moisture over a timestep

Carbon balance (and plant and soil carbon pools)

```
NPP = GPP - R_a = (\Delta C_f + \Delta C_s + \Delta C_r) / \Delta t
```

 $NEP = NPP - R_{h}$

NBP = NEP – Fire – Land Use

- NPP is net primary production, GPP is gross primary production
- R_a is autotrophic (plant) respiration, R_h is heterotrophic (soil) respiration
- ΔC_f , ΔC_s , ΔC_r are foliage, stem, and root carbon pools
- NEP is net ecosystem production, NBP is net biome production

Model design philosophy

Coupling with the atmosphere every model timestep is a fundamental constraint (< 30 minute timestep)

So is the need to represent the global land surface, including Antarctica, the Tibetan Plateau along with forests, grassland, croplands, tundra, desert scrub vegetation, and cities

Conservation of energy and mass is required

We strive to develop a process-level understanding across multiple ecosystems and at multiple timescales (instantaneous, seasonal, annual, decadal, centuries)

Top-down, empirical modeling

Thornthwaite: Monthly potential evapotranspiration driven by air temperature

$$E_p = 16 \left(\frac{L}{12}\right) \left(\frac{N}{30}\right) \left(\frac{10T}{I}\right)^a$$

Priestley–Taylor equation: Daily potential evapotranspiration driven by radiation

$$E_p = \alpha \frac{s}{s + \gamma} \frac{R_n}{\lambda}$$

Production efficiency model driven by radiation and empirical scalars

 $GPP = \varepsilon S \downarrow f_1(T) f_2(\theta) f_3(VPD)$

Annual NPP driven by temperature and precipitation

$$NPP = \min\left\{\frac{3000}{1 + \exp(1.315 - 0.119T)}, 3000\left[1 - \exp(-0.000664P)\right]\right\}$$

Process modeling

Penman-Monteith equation FvCB photosynthesis model Ball-Berry stomatal conductance model Fick's law of diffusion Darcy's law and Richards equation (soil water) Fourier's law (heat conduction)

Lack of a common language

Flux is proportional to the driving force:

Flux = proportionality constant * gradient of driving potential

Describes heat flow in soil (Fourier's law), water flow in soil (Darcy's law), turbulent fluxes (Fick's law)

Model name

Model name depends on discipline:

Atmospheric sciences land surface model soil-vegetation-atmosphere-transfer model

Hydrology

hydrologic model (SVAT with lateral fluxes)

Ecology

biogeochemical model dynamic global vegetation model ecosystem demography model

The Community Land Model

Fluxes of energy, water, CO_2 , CH_4 , BVOCs, and Nr and the processes that control these fluxes in a changing environment

Oleson et al. (2013) NCAR/TN-503+STR (420 pp)

Lawrence et al. (2011) J. Adv. Mod. Earth Syst., 3, doi: 10.1029/2011MS000045

Lawrence et al. (2012) J Climate 25:2240-2260

Spatial scale

1.25° longitude ? 0.9375° latitude (288 ? 192 grid), ~100 km ? 100 km

Temporal scale

- 30-minute coupling with atmosphere
- Seasonal-to-interannual (phenology)
- Decadal-to-century (disturbance, land use, succession)
- Paleoclimate (biogeography)

Landscape dynamics

Land surface heterogeneity

Sub-grid land cover and plant functional types

1.25° in longitude (~100 km)

The model simulates a column extending from the soil through the plant canopy to the atmosphere. CLM represents a model grid cell as a mosaic of up to 5 primary land units. Each land unit can have multiple columns. Vegetated land is further represented as patches of individual plant functional types

Surface energy balance and surface temperature

Surface energy balance:

Soil heat storage:

 $(S?-S?) + ?L? - ? \sigma T_s^4 - H[T_s] - ?E[T_s] = \text{soil heat storage} \quad c_v \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial T}{\partial z} \right)$

Flux = Δ concentration * conductance

Atmospheric forcing

- S? Solar radiation (vis, nir; direct, diffuse)
- L? Longwave radiation
- T_a air temperature
- q_a atmospheric water vapor
- u wind speed
- P surface pressure

Surface properties

- S? reflected solar radiation (albedo)
- ? emissivity
- g_{ah} aerodynamic conductance (roughness length)
- g_c surface conductance
- k thermal conductivity
- $\rm c_v$ soil heat capacity

With atmospheric forcing and surface properties specified, solve for temperature T_s that balances the energy budget

$$\overline{u}(z) = \frac{u_*}{k} \left[\ln\left(\frac{z-d}{z_0}\right) - \psi_m(\zeta) \right]$$
$$\overline{\theta}(z) - \overline{\theta}_s = \frac{\theta_*}{k} \left[\ln\left(\frac{z-d}{z_{0h}}\right) - \psi_h(\zeta) \right]$$
$$\overline{q}(z) - \overline{q}_s = \frac{q_*}{k} \left[\ln\left(\frac{z-d}{z_{0h}}\right) - \psi_w(\zeta) \right]$$

with z_0 roughness length, ddisplacement height, and $\psi(\zeta)$ corrects for atmospheric stability

$$\overline{u}(z) = \frac{u_*}{k} \left[\ln\left(\frac{z-d}{z_0}\right) - \psi_m(\zeta) \right]$$
$$\overline{\theta}(z) - \overline{\theta}_s = \frac{\theta_*}{k} \left[\ln\left(\frac{z-d}{z_{0h}}\right) - \psi_h(\zeta) \right]$$
$$\overline{q}(z) - \overline{q}_s = \frac{q_*}{k} \left[\ln\left(\frac{z-d}{z_{0h}}\right) - \psi_w(\zeta) \right]$$

with z_0 roughness length, ddisplacement height, and $\psi(\zeta)$ corrects for atmospheric stability

Plant canopies

CLM perspective of the land surface

Deardorff (1978) JGR 83C:1889-1903 Dickinson et al. (1986) NCAR/TN-275+STR Dickinson et al. (1993) NCAR/TN-387+STR

Radiative transfer

Two-stream radiative transfer

CLM uses the two-stream approximation (Dickinson, Sellers)

$$\frac{dI^{\uparrow}}{dx} = \left[1 - (1 - \beta)\omega_{\rm I}\right]K_{d}I^{\uparrow} - \beta\omega_{\rm I}K_{d}I^{\downarrow} - \beta_{0}\omega_{\rm I}K_{b}I_{sky,b}^{\downarrow}e^{-K_{b}x}$$

$$\frac{dI^{\downarrow}}{dx} = -\left[1 - (1 - \beta)\omega_{\mathrm{I}}\right]K_{d}I^{\downarrow} + \beta\omega_{\mathrm{I}}K_{d}I^{\uparrow} + (1 - \beta_{0})\omega_{\mathrm{I}}K_{b}I_{sky,b}^{\downarrow}e^{-K_{b}x}$$

(b) Upward diffuse

(a) Downward diffuse

(c) Direct beam

$$\underbrace{ \left| \begin{array}{c} & & \\$$

How do we scale from leaf to canopy?

Leaf energy balance:

$$c_{L}\frac{\partial T_{1}}{\partial t} = Q_{a} - 2\varepsilon_{1}\sigma T_{1}^{4} + 2c_{p}\left(T_{1} - T_{a}\right)g_{bh} + \lambda\left[q_{*}\left(T_{1}\right) - q_{a}\right]g_{1}$$

Atmospheric forcing

- Q_a radiative forcing (solar and longwave)
- T_a air temperature
- q_a water vapor (mole fraction)
- u wind speed
- P surface pressure

Leaf properties

- **?**ℓ emissivity
- g_{bh} leaf boundary layer resistance
- $g_{\boldsymbol{\ell}}$ leaf resistance to water vapor
- \boldsymbol{c}_{L} heat capacity

With atmospheric forcing and leaf properties specified, solve for temperature T_e that balances the energy budget

Leaf boundary layer

Stomatal gas exchange

Stomatal conductance

Scale bar 50 μm

Ball-Berry stomatal conductance model

$$g_s = g_0 + g_1 A_n h_s / c_s$$

Empirical relationship between stomatal conductance and photosynthesis and is applied separately to sunlit canopy and shaded canopy Optimization theory

Stomata optimize photosynthetic carbon gain per unit transpiration water loss while preventing leaf desiccation

 $\Delta A_n \leq \iota D_s \Delta g_s$ and $\Psi_l > \Psi_{l\min}$

Williams et al. (1996) Plant Cell Environ. 19:911-927 Bonan et al. (2014) Geosci. Model Dev. 7:2193-2222

Leaf photosynthesis

Farquhar, von Caemmerer, Berry photosynthesis model

 $A_n = \min(A_c, A_j) - R_d$

 w_{c} is the rubisco-limited rate of photosynthesis, w_{j} is light-limited rate allowed by RuBP regeneration

rubisco-limited rate is

$$A_{c} = \frac{V_{c \max}(c_{i} - \Gamma_{*})}{c_{i} + K_{c}(1 + o_{i}/K_{o})}$$

RuBP regeneration-limited rate is

$$A_{j} = \frac{J(c_{i} - \Gamma_{*})}{4(c_{i} + 2\Gamma_{*})}$$

Leaf physiological parameters

Canopy conductance – gradients of PAR

Sunlit and shaded canopy

Nitrogen profile

Decline in foliage N (per unit area) with depth in canopy yields decline in photosynthetic capacity (Vcmax, Jmax)

Bonan et al. (2011) JGR, doi:10.1029/2010JG001593

$$V_{c \max 25}(x) = V_{c \max 25}(0)e^{-K_n x}$$

$$f_{sun}(x) = e^{-K_b x}$$

$$V_{c \max 25}(sun) = \int_{0}^{L} V_{c \max 25}(x)f_{sun}(x)dx$$

$$V_{c \max 25}(sha) = \int_{0}^{L} V_{c \max 25}(x)[1 - f_{sun}(x)]dx$$

Note: CLM5 has a more complex canopy optimization

Plant canopy as a "big leaf"

Most models use two-leaves (sunlit and shaded)

Flux towers & model validation

Bonan et al. (1997) JGR 102D:29065-75

Flux towers & model validation

comparison (boreal to tropical)

2000s: annual cycle, multi-site

CLM3.0 – dry soil, low latent heat flux, high sensible heat flux CLM3.5 – wetter soil and higher latent heat flux

Stöckli et al. (2008) JGR, 113, doi: 10.1029/2007JG000562

Flux towers & model validation

CLM4 overestimates GPP. Model revisions improve GPP. Similar improvements are seen in evapotranspiration

Improved annual latent heat flux

Model improvements reduce ET biases, especially in tropics, and improve monthly fluxes

Bonan et al. (2011) JGR, doi:10.1029/2010JG001593

Modeling across scales

Stöckli et al. (2008) JGR, 113, doi: 10.1029/2007JG000562

Surface fluxes

Roughness sublayer, multilayer canopies

Radiative transfer

3D structure, canopy gaps

Photosynthesis

Temperature acclimation, CO₂ response, product-limited rate, C4 plants

Stomatal conductance

Soil moisture stress, WUE optimization, CO₂ response

Canopy scaling

Optimal distribution of nitrogen

Canopy turbulence and the roughness sublayer

Harman & Finnigan (2007) Boundary-Layer Meteorol. 123:339-363 Harman & Finnigan (2008) Boundary-Layer Meteorol. 129:323-351

Two ways to model plant canopies

Photographs of Morgan Monroe State Forest tower site illustrate two different representations of a plant canopy: as a "big leaf" (below) or with vertical structure (right)

\downarrow	SUNLIT
Depth in Canopy	SHADED
- A - I	JIADLD

Big-leaf canopy

- Two "big-leaves" (sunlit, shaded)
- Radiative transfer integrated over LAI (two-stream approximation)
- Photosynthesis calculated for sunlit and shaded big-leaves

Multilayer canopy

- Explicitly resolves sunlit and shaded leaves at each layer in the canopy
- Light, temperature, humidity, wind speed, H, E, A_n, g_s, ψ_L
- New opportunities to model stomatal conductance from plant hydraulics (g_s, ψ_L)

Friction velocity (momentum flux)

US-Ha1, July 2001 (DBF)

CLM4.5

