

Fire in CLM

Fang Li

Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) E-mail: <u>lifang@mail.iap.ac.cn</u> office: ML-194

Ack.: S. Levis, X.-D. Zeng, F. Vitt, M. Val Martin, Q.-C. Zeng, D. M. Lawrence, R. E. Dickinson, E. Kluzek, B. Bond-Lamberty, D. S. Ward, B. Sacks...

Motivation for fire modeling

Satellite-based annual burned area fraction

Fire:

• primary form of terrestrial ecosystem disturbance on a global scale

•affects ecosystems, and carbon cycle (fire C emis.: ~2 Pg C/yr)

• tightly interacts with the biosphere/atmosphere

•Fire emissions

•contain key greenhouse gases, and the largest source of primary carbonaceous aerosol mass globally

•affect global radiation balance

(Ward et al. 2012)

Impact on climate

By changing ecosystems

Impact on human and animal

CLM fire scheme

(Li et al., 2012, 2013; Li et al., in prep.; Val Martin et al., in prep.)

Non-peat fires in Reg. C (process-based, Intermediate)

(Li et al. 2012, Biogeosciences)

•Fire occurrence

Fuel availability Fuel combustibility Fire counts in a grid cell : $N_f = N_i f_b f_m f_{\underline{ns}, PD} f_{\underline{ns}, GDP}$ Ignition counts Non-suppression rate

Ignition counts: N_i = lightning ignitions + human ignitions

(Li et al., 2012, 2013, 2016)

Human ignitions and fire suppression

(Li et al., 2012, 2013)

•Fire spread

Average burned area of a fire

Average burned area of a fire without human suppression (average fire duration τ (s)=1day) :

$$a_1 = \pi \frac{l}{2} \frac{w}{2} \times 10^{-6} = \frac{\pi u_p^2 \tau^2}{4L_B} (1 + \frac{1}{H_B})^2 \times 10^{-6}$$

Fire spread rate in the downwind direction:

 $u_p = f$ (fuel wetness) g(wind speed)

$a = a_1 F_{ns, PD} F_{ns, GDP}$ More developed /more densely populated \rightarrow higher suppression

(Li et al., 2012, 2013)

Agricultural fires (Reg. A)

Burned area frac. Fuel availability

$$\hat{f}_{ba} = a \hat{f}_b f_{se} f_t - F$$

Fire seasonality

Socioeconomic factor

Deforestation fires (Reg. B)

Fuel combustibility

$$f_{ba} = b f_{lu} f_{cli,d}$$

Deforestation rate

Peat fires

Frac. area with water table at the surface or higher

•Fire impact (PFT-level)

Fire C/N emissions

fire C/N emis.= C/N pools × PFT-dependent combustion completeness factor × burned area frac.

Fire-induced veg. mortality

whole-plant mortality= Pop. den. \times PFT-dependent individual mortality factor 1 \times burned area frac.

Veg. tissue mortality= C pools × PFT-dependent tissue mortality factor 2 × burned area frac.

Adjustment of C/N pool

Adjusted C/N pools for live veg. tissue= Original C/N pool – C/N loss due to biomass burning and mortality

Adjusted litter and CWD pools =original C/N pools – fire C/N emissions + C/N loss from fireinduced mortality

Surface trace gas and aerosol emissions due to fire (52 species)

= Fire C emis. × PFT-dependent emissions factors

Performance: CLM4.5 fire with Qian (1997-2004)

•Global spatial distribution of burned area fraction

Cor: global spatial correlation between obs and simulations

•Global spatial distribution of fire carbon emissions

(Li et al., 2013)

•Interannual variability

Seasonality of burned area fraction

Fire Aerosol and trace gas emissions (CLM4.5 with CLM5 fire emissions)

Global Total

Species	CLM	GFED	FINNv1
(Tg spec/yr)	2000-2005	2000-2005	2005-2010
CO ₂	5778-8236	6460-7920	6464-7920
СО	302-430	288-394	332-409
NO	3.4-4.6		4-4.8
NO _x	10.5-14.6	12-16	
SO ₂	2.2-2.8	1.9-2.9	1.9-2.4
BC	1.6-2.4	1.5-1.9	1.9-2.4
OC	16-24	13–19	21-25

20 Summer O₃ slope= 0.81 80 $r^2 = 0.64$ (qdd) N=177 America 15 60 CESM (ug/m3) **Present-day** slope=0.78 Model $r^2 = 0.79$ **Spatial Pattern** 40 10 N=29 slope = 0.81**Eastern US** 20 $r^2 = 0.39$ 5 Western US N=61 20 80 40 60 **Annual PM2.5** CASTNET (ppb) 0 5 10 15 20 (From M. Val Martin) IMPROVE (ug/m3)

• Simulated burned area in the 20th century (CLM4.5 with Qian)

in the range of long-term trends of reconstructions

similar to that from MF05

Fire simulations in CAM5.1-CLM4.5

Application: Impact of fire on carbon budget (CLM4.5)

•Global total average across the 20th C

	Variables	Fire-on-Fire-off	Fire-on	Fire-off
	NEE	1.0*	-0.1	-1.1
Fire direct impact	Fire carbon emissions	1.9*	1.9	0.0
Fire indirect impact	-NEP+C _{lh}	-0.9*	-2.0	-1.1
	NEP	0.8*	3.0	2.3
	NPP	-1.9*	49.6	51.6
	Rh	-2.7*	46.6	49.3
	GPP	-5.0*	118.9	123.9
	Ra	-3.1*	69.3	72.4
	C _{lh}	-0.1	1.0	1.1
*diff in the means passed student t-test at α =0.05 sig. level Unit: Pg C/yr				

• Fire significantly decreases net C gain by 1.0 Pg C/yr

• 42% of fire carbon emissions (1.9) is offset by fire indirect effects (-0.9)

Impact on global annual land water/heat budget and climate due to changing ecosystems (CAM5.1-CLM4.5) Fire effects on land ecosystem*(*n*=1) CO2 effects on land Variables Fire-on-Fire-off¹ ecosystem (*n*=2) **Impact on runoff** ET decrease ET -0.6 (-1%)* **Climate Changes during** increase runoff RO +0.6 (+2%)* 20th Century (*n*=1) limited impact Pr +0.0(+0%)on precipitation Et -1.5 (-4%)* Irrigation (*n*=6) Ec -0.5 (-4%)* +1.4 (+5%)* Es LULCC (no irrigation) (*n*=10) Unit: $10^3 \text{ km}^3/\text{yr}$, * sig. at $\alpha = 0.05$ (Li and Lawrence, JC, minor revision) -2 -1 1 2 3 0 4 Change to runoff (10³ km³ yr⁻¹) Variable^a Diff Variable Diff Warming $SLR (W m^{-2})$ $\pm 0.42*$ Tas (°C) +0.04limited impact on shortwave R. ISR (W m^{-2}) NSR (W m^{-2}) -0.02-0.03ALR ($W m^{-2}$) +0.10 $RSR (W m^{-2})$ -0.01mainly b/c decrease in SH (W m⁻²) $Lt (W m^{-2})$ -0.02-0.82*latent heat (LH) LH (W m^{-2}) -0.32* $Lc (W m^{-2})$ -0.27*Thanks! $G(W m^{-2})$ +0.00Ls (W m^{-2}) +0.78*LAI $(m^2 m^{-2})$ NLR (W m^{-2}) +0.32*-0.10*decrease net radiation NR (W m⁻²) -0.34*Veg. H (m) -0.19*

(Li et al., GRL, under review)