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A	highly	biased	and	terrestrial-centric	
<meline	of	the	GCM	–	ESM	evolu<on	

“GCM	era”	

1991:	Tans,	Fung,	&	
Takahashi:	terrestrial		
carbon	sink	is	large,	
start	of	the	“missing	
sink”	era.	
	
Follow-on	papers:		
Ciais	et	al,	1995:	13C	
Pacala	et	al.,	2001:	
how	to	reconcile	
boZom-up	and	top-
down	es<mates	of	C	
sinks?	

1992:	Bonan	et	al.,	
1996:	Sellers	et	al.:	
	
Physically-coupled	
climate	ecosystem	
models	
	
Biophysical	effects	
of	terrestrial	
ecosystems	are	
large	and	need	to	
be	incorporated	in	
climate	projec<ons	
	

1995:	VEMAP	
(offline	MIP)	
	
2000:	first	
coupled-carbon-
climate	models.	
	
Carbon	feedbacks	
are	either	
enormous	(Cox	et	
al.,	2000)	or	not	
(Friedlingstein	et	
al.,	2001)	

“ESM	era”	

2006:	C4MIP	
(Friedlingstein	et	al)	
2009:	Gregory	et	al	
2013-:	CMIP5	exps	
(many	papers)	
	
Theory	developed	for	
including	carbon	
feedbacks	into	
climate	projec<ons,	
“allowable	emissions”	
but	the	models	
underlying	the	theory	
s<ll	completely	
uncertain	

1990	 2000	 now	



Modeling	the	Earth	system	

Atmosphere	

Ocean	

Land	

Water,	energy,		
momentum,	CO2	

Water,	energy,		
momentum,	CO2	

Water	



Stocks	and	flows	of	carbon	in	the	Earth	system	

IPCC-AR5	(Ciais	et	al.,	2013)	



Changes	in	the	budget	over	<me	

The	sinks	have	con<nued	to	grow	with	increasing	emissions,	but	climate	change	will	affect	
carbon	cycle	processes	in	a	way	that	will	exacerbate	the	increase	of	CO2	in	the	atmosphere	

Source:	CDIAC;	NOAA-ESRL;	Houghton	et	al	2012;	Giglio	et	al	2013;	Le	Quéré	et	al	2015;	Global	Carbon	Budget	2015	

Data: GCP



Global	carbon	budget	

The	carbon	sources	from	fossil	fuels,	industry,	and	land	use	change	emissions	are	balanced	by	
the	atmosphere	and	carbon	sinks	on	land	and	in	the	ocean		

Source:	CDIAC;	NOAA-ESRL;	Houghton	et	al	2012;	Giglio	et	al	2013;	Joos	et	al	2013;	Kha<wala	et	al	2013;		
Le	Quéré	et	al	2015;	Global	Carbon	Budget	2015	
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Coupled	carbon	cycle	–	climate	modeling	
intercomparison	project	(C4MIP)	protocol,	CMIP5	version	

IPCC-AR5	(Ciais	et	al,	2013)	
Offline	analogues	with	CLM:		

•  “biophysical”	CO2	via	namelist	and	stream	files	
•  “radia<ve”	CO2	via	forcing	data	



Friedlingstein	et	al.,	2006	

Theore2cal	framework:		
determine	linear	feedback	terms	γ,	β	

Arora	et	al.,	2013	

Gregory	et	al.,	2009,		
Arneth	et	al,	2010:	
Put	biogeochemical	
feedbacks	in	same	units	as	
physical	feedbacks	

Climate	resistance	(W	m-2	K-1)	=	∆RFCO2/∆T	

Linearized	∆RF/∆CO2	(W	m-2	Pg	C)	

Transient	climate		
sensi<vity	(K	ppm-1)	



IPCC-AR5-WG1-Ch6	(Ciais	et	al.,	2013)	
Es<mates	of	biogeochemical	feedback	parameters		

IPCC-AR5	(Ciais	et	al,	2013)	



For	comparison,	IPCC-AR4	spread	in	
physical	feedbacks	



“Allowable	Emissions”,	the	total	global	amount	of	carbon	we	can	burn	
and	s<ll	allow	Earth	to	remain	below	a	given	climate	change,	is	
sensi<ve	to	both	the	physics	and	biology	in	the	Earth	system	

IPCC	AR5	Summary	for	Policymakers	
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(at	least)	2	types	of	uncertainty:	

•  Resolved	uncertainty:	That	uncertainty	which	
can	be	es<mated	using	the	spread	in	
predic<ons	between	members	of	a	MIP	
ensemble,	parametric	perturba<on	ensemble,	
etc.	

•  Unresolved	uncertainty:	Uncertainty	that	can’t	
be	es<mated	from	looking	at	parametric	or	
structural	ensemble	spreads,	because	it	is	
based	on	shared		assump<ons.	



CMIP5-genera<on	ESM	predic<ons	

•  CO2	fer<liza<on	effect:	strongest	in	
the	tropical	forests,	basically	
propor<onal	to	produc<vity	

•  CO2	fer<liza<on	effect:	stabilizing	
everywhere	

•  Climate	effect:	stabilizing	at	high	
la<tudes,	destabilizing	at	low	
la<tudes	

•  Climate	effect	also	highest	in	
tropical	forests,	weaker	at	high	
la<tudes	

IPCC-AR5	(Ciais	et	al,	2013)	



What	drives	carbon	feedbacks:	inputs	or	outputs?		1:	Vegeta<on	

Response	to	climate	change	 Response	to	CO2	fer<liza<on	
Input-driven	 Output-driven	 Input-driven	 Output-driven	

Koven	et	al.,	Biogeosciences,	2015	



Response	to	climate	change	 Response	to	CO2	fer<liza<on	

Assume	zero	
to	separate	
transient	

response	to	
inputs	in	
warming		
case	

Input-driven	 Output-driven	 Input-driven	 Output-driven	

What	drives	carbon	feedbacks:	inputs	or	outputs?		2:	Soils	

Koven	et	al.,	Biogeosciences,	2015	



Globally-intregated	historical	C	cycle:	models	and	obs	Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381
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Figure 1. (a) Most ESMs exhibit a high bias in atmospheric carbon dioxide
(CO2) mole fraction. The predicted atmospheric CO2 mole fraction for the 19
historical simulations shown here ranges from 357 to 405 ppm at the end of
the CMIP5 historical period (1850–2005). (b) The multimodel mean is biased
high from 1946 throughout the remainder of the twentieth century, ending
5.6 ppm above observations in 2005.

century (Figure 1b). By the end of the his-
torical model simulation period (2005),
the multimodel mean was 5.6 ppm above
observations and the models ranged from
21.7 ppm below to 26.2 ppm above the
observed CO2 mole fraction of 378.8 ppm.
Of the 19 historical simulations from 15
ESMs included in this analysis, only two
predicted a CO2 mole fraction well below
observations in 2005. By 2010, near the end
of the observational record, the multimodel
mean was 7.9 ppm higher than the global
mean CO2 mole fraction reported by NOAA
GMD [Conway et al., 1994]. This bias was
probably a conservative estimate of the true
multimodel mean bias because fossil fuel
emissions from the RCP 8.5 scenario during
2006–2010 (8.6 Pg C yr−1) were slightly lower
than the observed emissions (8.7 Pg C yr−1)
[Peters et al., 2013; Le Quéré et al., 2013].

3.2. Causes of the Contemporary Bias
Most ESMs exhibited a small or moderate
low bias in ocean carbon accumulation from
1870 to 1930 when compared with adjusted
estimates from Khatiwala et al. [2013], but
most ESMs were contained within the enve-
lope of observational uncertainty after 1930
(Figure 2a). Ocean carbon accumulation
ranged from 88 to 261 Pg C, with a multi-

model mean of 145 Pg C, as compared with observational estimates of 142 ± 38 Pg C through year 2010.
Excluding the two outlier models that had unlikely land contemporary sink estimates (FGOALS-s2.0 and
MRI-ESM1), the range of ocean carbon accumulation was reduced to 101–210 Pg C with a mean of 141 Pg C
at 2010, a better match with observations. However, most ocean models achieved this correspondence
with observational estimates primarily as a consequence of high biases in atmospheric CO2 mole fraction.
Normalizing ocean carbon accumulation with atmospheric accumulation

(
ΔCO

ΔCA

)
provided a measure of

the strength of ocean carbon storage in emissions-forced simulations that partially accounted for atmo-
spheric CO2 biases. Performing this normalization and comparing with adjusted ocean inventories from
Sabine et al. [2004] for 1994 (Figure S2) and from Khatiwala et al. [2013] for 2010 (Figure 3) indicated that the
majority of models were near or below the observed ratio. Across the different models, the ocean/
atmosphere ratio ranged from 0.42 to 0.99, with a multimodel mean of 0.61, which compared well with the
observational estimate of 0.64 ± 0.15 in 2010. Excluding the same two outlier models (FGOALS-s2.0 and
MRI-ESM1), the range of the ocean/atmosphere ratio was reduced to 0.42–0.91, with a mean of 0.58.

Terrestrial biosphere models within ESMs also had a wide range of responses, with both positive and neg-
ative net carbon accumulation throughout the twentieth century (Figures 3 and S2). Terrestrial and ocean
carbon accumulation compensated for one another (R = −0.91, Figure S3), reducing the bias in predicted
atmospheric CO2. This compensation effect was exemplified by the INM-CM4 model, which had the correct
atmospheric CO2 in 2005, but had strong ocean uptake that was balanced by weak land carbon uptake. Dur-
ing the second half of the twentieth century, the land carbon sink was persistent with high rates during the
1990s and 2000s (Table 2). Thought to be due to changes in human land use (i.e., reduced deforestation,
new afforestation, and secondary regrowth of previously cleared land), wildfire suppression [Girod et al.,
2007; Hurtt et al., 2002], and enhanced forest growth due to rising atmospheric CO2 levels and higher rates
of nitrogen deposition [Pan et al., 2011; Phillips et al., 2009], this growing land sink reinforced rising ocean
uptake rates and resulted in a doubling of global carbon uptake between 1960 and 2010 [Ballantyne et al.,

HOFFMAN ET AL. ©2013. The Authors. 149

•  Hoffman	et	al.,	2014	

Wide	range	of	CO2	
predic<on,	but	
models	tend	to	
underes<mate	the	
combined	carbon	
sinks	
	
Amplitudes	of	
carbon	seasonal	
cycles	all	over	the	
place	



Idealized	feedback	experiments	ignore	
the	large	role	played	by	land	use	

Lawrence	et	al.,	2016	



Nonetheless:	a	recap	of	the	CMIP5-genera<on	model	
predic<ons	/	hypotheses:	

1.  CO2	fer<liza<on	strong:	everywhere	but	especially	in	tropical	
forests	

2.  Change	in	biomass	basically	scales	with	change	in	NPP;	weak	
nonlinear	effects	like	self-thinning	

3.  Change	in	soil	basically	scales	with	change	in	NPP;	no	
nonlinear	soil	effects	to	changing	inputs	

4.  Carbon	losses	due	to	warming	mainly	due	to	change	in	NPP:	
strong	losses	in	NPP	in	the	tropics	because	of	increased	VPD	

5.  Weak	feedback	due	to	respira<on	from	warming	soils	
6.  Weak	or	negligible	feedback	from	vegeta<on	mortality	
	

But:	which,	if	any,	of	these	are	correct?	



H1:	CO2	fer<liza<on	strong:	everywhere	but	especially	
in	tropical	forests	

Evidence	for:	rough	agreement	
between	atmospheric	
inversions,	forest	
measurements,	and	models.	
Circumstan<al	but	mul<-
faceted.	
	
Evidence	against:	models	
missing	key	processes	like	N	and	
P	limita<ons	that	ought	to	
reduce	growth	rates	(although	
the	models	with	nutrients	tend	
to	overes<mate	the	
stoichiometric	fixednesss	of	
ecosystems).	Fingerprints	of	
fer<liza<on	in,	e.g.,	tree	rings	
not	obvious.	Schimel	et	al.,	2015	



H2:	Change	in	biomass	basically	scales	with	change	in	
NPP;	weak	nonlinear	effects	like	self-thinning	

	

Keeling	and	Phillips,	2007	

CMIP5	ESMs	Observa<ons	

Negron-Juarez	et	al.,	2015	

Space-for-<me	subs<tu<on	suggests	this	is	wrong.	Biomass	does	not	
scale	linearly	with	produc<vity	because	high-growth	forests	are	also	
high-mortality	forests.		Unclear	if	this	also	applied	to	transient	case,	
but	need	to	represent	individual	and	stand-level	dynamics	in	ESMs.	



H3:	Change	in	soil	basically	scales	with	change	in	NPP;	
no	nonlinear	soil	effects	to	changing	inputs	

Duke	FACE	

ORNL	FACE	

Sulman	et	al.,	2014	

Evidence	for:	space-for-<me	
subs<tu<on	does	show	higher	C	with	
higher	NPP;	transient	responses	to	
increased	and	decreased	inputs	in	
agricultural	soils;	e.g.	long-term	
fallow.	
	
Evidence	against:	FACE	experiments	
more	compa<ble	with	a	more	
complex	model	of	enhanced	
decomposi<on	via	microbial	priming	
working	against	mineral	stabiliza<on	
processes.	



H4:	Carbon	losses	due	to	warming	mainly	due	to	change	in	NPP:	
strong	losses	in	NPP	in	the	tropics	because	of	increased	VPD	

Cox	et	al.,	2014	

Doughty	et	al.,	2008	

Evidence	for:	Interannual	
variability	constraint	(but	
see	Keppel-Aleks	2015);	
high-frequency	leaf-level	
and	canopy-level	flux	
measurements.	
	
Evidence	against:	tropical	
forests	hugely	diverse,	
which	current	models	don’t	
represent.		Quite	possible	
that	long-term	and	short-
term	dynamics	diverge	as	a	
result	of	community-level	
processes.	



H5:	Weak	feedback	due	to	respira<on	from	warming	soils	

Koven	et	al.,	PNAS,	2015	

Evidence	for:	On	one	hand,	
warming	experiments	such	as	
that	at	Harvard	Forest	show	a	
rela<vely	fast	equilibra<on	that	
suggests	microbes	may	
acclimate	quickly	to	warming	
with	liZle	carbon	loss.			
	
Evidence	against:	none	of	the	
models	used	in	CMIP5	included	
any	representa<on	of	carbon	in	
permafrost,	which	is	the	single	
largest	pool	in	the	terrestrial	
system.		Including	such	a	pool	
qualita<vely	changes	the	
predic<on	to	large	but	slow	
losses	from	high	la<tude	soils.		



H6:	Weak	or	negligible	feedback	from	vegeta<on	mortality	
	

Brienen	et	al.,	2015	

Evidence	for:	None	really,	
most	of	the	models	simply	
don’t	include	the	process	
	
Evidence	against:	observa<ons	
of	increasing	mortality	in	
Amazon,	western	US,	
elsewhere.		But,	is	this	due	to	
environmental	stress,	or	
merely	increased	self-thinning	
due	to	CO2	fer<liza<on?	
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C	isotopes	as	observable	diagnos<cs	of	model	behaviors		

CLM4.5	and	CLM5	include	ability	to	enable	2nd	and/
or	3rd	instance	of	en<re	C	cycle,	including	all	pools	
and	fluxes,	for	isotope	calcula<ons.		These	have	no	
effect	on	the	overall	behavior	of	the	model	but	
may	be	useful	to	diagnose	and	benchmark	model.	



4	basic	use	cases	for	C	isotopes	in	CLM	
1:	Dole	Effect	

2:	14C	bomb	spike	

3:		13C	photosynthe<c	frac<ona<on	

4:	14C	natural	abundance	



To	use	isotopes	in	CLM:	

•  Enable	them	via	the	namelist	flags:	use_c14,	
use_c13	

•  Ensure	that	transient	isotopic	forcing	data	is	
present	and	looks	like	it	should.		The	bomb	spike	
file	should	auto-load	by	default	but	the	13C	Dole	
effect	file	is	(I	don’t	think)	default.	

•  Spin	up	with	isotopes	on	and	proceed.	
Radioac<ve	decay	of	14C	is	also	accelerated	
during	AD	spinup,	so	as	to	allow	rapid	
equilibra<on	of	old	14C	pools	(see	Koven	et	al,	
Biogeosciences,	2013	for	details).	



A	few	things	to	be	aware	of	with	respect	to	
isotopes	in	CLM	

•  No	post-photosynthe<c	frac<ona<on	(though	his	could	be	
added	easily	enough)	

•  Nighxme	autotrophic	respira<on	currently	uses	credit-card	
rather	than	debit-card	accoun<ng.		This	is	unfortunately	
necessary	at	present,	but	it	messes	with	the	isotopic	
signature	of	Ra.	(see	Duarte	et	al.,	in	prep)	

•  CLM4.5	and	prior	used	a	2-step	N	downregula<on	of	GPP,	
which	made	the	GPP	flux	inconsistent	with	the	Ci/Ca	and	
transpira<on	fluxes.		This	leads	to	weird	isotopic	issues	(see	
Raczka	et	al.,	Biogeosciences	2016)	but	should	be	corrected	in	
CLM5,	which	uses	a	foliar	limita<on	paradigm.	

•  No	photosynthe<c	frac<ona<on	applied	to	14C.		This	is	by	
design	to	simplify	the	math	such	that	∆14C	=	∂14C.		But	don’t	
try	to	double-correct	the	14C	when	conver<ng	into	∆	units.	


