

Hydrology in the Community Land Model

Sean Swenson Terrestrial Sciences Section

The **Community Land Model** is a... ?

a) Hydrology model
b) Land Surface model
c) Terrestrial Processes model
d) Biogeochemical cycling model
e) Atmospheric lower boundary condition

The movement of **water** is inextricably linked to the flow of **energy** and the life cycle of **vegetation**

The *modeling* of the movement of water is inextricably linked to the *modeling* of the flow of energy and the *modeling* of the life cycle of vegetation

The Water Balance

$\mathbf{P} = \mathbf{E} + \mathbf{R} + \Delta \mathbf{S}$

P = Precipitation E = Evapotranspiration R = Runoff S = Storage

Different Models, Different Foci

Flood Forecasting \Rightarrow **R**

NWP, Climate Prediction \Rightarrow **E**

Drought Monitoring, Groundwater **⇒ S**

Different Foci, Different Models

1-D ⇒ Darcy Flow (Infiltration/Recharge)

2-D \Rightarrow River Routing

3-D ⇒ Saturated Flow (Groundwater)

CLM is tasked with simulating *all* of these phenomena...

...therefore, *trade-offs* will be made.

Precipitation

 \Rightarrow Partitioning between rain and snow, or between stratiform and convective

⇒ Canopy interception, storage, and throughfall

Evaporation

⇒ Evaporation from Soil / Canopy / Snow / Surface Water

⇒ Transpiration from vegetation

Runoff
 ⇒ Surface Runoff (Infiltration and/or
Saturation Excess)
 ⇒ Subsurface Runoff (Baseflow)
 ⇒ River Routing

Storage

- ⇒ Soil Moisture
- ⇒ Groundwater and water table depth
- \Rightarrow Perched water table
- ⇒ Canopy water
- ⇒ Surface water
- ⇒ Snow

Storage Components

Surface Processes

- Precipitation partitioning
- Canopy hydrology
- Snow hydrology
- Surface runoff
- Infiltration
- Surface water (wetlands)
- Flooding
- River routing

Canopy Hydrology

- Interception / throughfall
- Leaf water storage and wetted fraction
- Evaporation from leaf surfaces

Canopy Hydrology And Evapotranspiration Partitioning

Ground Evaporation: 24%

Canopy Evaporation: 23%

Transpiration: 53%

Leaf Wetted Area

Leaf Wetted Fraction

Canopy Hydrology And Evapotranspiration Partitioning

Ground Evaporation: 21%

Canopy Evaporation: 18%

Transpiration: 61%

Snow Hydrology

- Density of new snow.
- Interception and canopy storage
- Multi-layer structure
- Compaction and metamorphosis
- Radiative transfer including aerosol effects
- Fractional snow covered area
- Subgrid surface energy and moisture fluxes

Snow model

Treats processes such as:

- Accumulation
- Snow melt and refreezing
- Snow aging
- Water transfer across layers
- Snow compaction:
 - destructive metamorphism due to wind
 - overburden
 - melt-freeze cyclesI
- Sublimation
- Aerosol deposition

Up to 5-layers of varying thickness

Snow Radiative Transfer (SNICAR)

- Snow darkening from deposited black carbon, mineral dust, and organic matter
- Vertically-resolved solar heating in the snowpack
- Snow aging (evolution of effective grain size) based on:
 - Snow temperature and temperature gradient
 - Snow density
 - Liquid water content and
 - Melt/freeze cycling

Fractional Snow Covered Area

- Describes sub-gridscale snow cover
- Based on snow water equivalent (SWE)
- Dependent on snow history
- Dependent on snow trajectory

ų

Subgrid Snowpack and Surface Fluxes

CLM Canopy Snow Treatment

• Introduced canopy snow storage variable, and related fluxes

Current Canopy Hydrology

Snow Veg. Implementation

Evergreen Snow Interception Measurements

- More representative of in-situ snow canopy storage
- (previous snow albedo present only in freezing temps.

Canopy Interception of Unmodified CLM, Improved CLM, and Observation (mm)

Surface Water Processes

- Surface runoff
- River routing
- Infiltration
- Surface water (wetlands)
- Flooding

River model

- Routes runoff to the oceans
- Flow directions are obtained from an input dataset
- Calculates water volume and discharge

Model for Scale Adaptive River Transport

Proudly Operated by Battelle Since 1965

- Hillslope routing accounts for event dynamics and impacts of overland flow on soil erosion, nutrient loading, etc.
- Sub-network routing: scale adaptive across different resolutions to reduce scale dependence
- Main channel routing: explicit estimation of in-stream status (velocity, water depth, etc).

(Li et al., JHM, 2013)

Microtopography PDF

(Subgrid-scale) Surface Water Storage

• Uses a statistical description of the **microtopography** to determine volume/area relations and connectivity

• When storage is large, inundated areas are well connected, and surface runoff is high.

• When storage is small, inundated areas are generally not connected, and surface runoff is low.

Subsurface Processes

- Soil evaporation
- $\boldsymbol{\cdot}$ Rooting distribution and transpiration
- Soil moisture redistribution
- Recharge
- Groundwater and water table
- Lateral subsurface flow

Soil Moisture Redistribution

- Hydrostatic equilibrium form of Richards equation
- Moisture form of Richards equation with adaptive sub-stepping

Soil model

Treats processes such as:

- Soil moisture redistribution
 - Infiltration
 - Darcy flow
 - Recharge
- Soil moisture phase change
- Soil temperature redistribution

Default structure has 20 layers of variable thickness, spanning about 8 meters depth

• Thermal calculations use additional deep layers

a) Soil moisture (% saturation)

b) Soil temperature (°C)

Stippling indicates frozen soil

Adaptive time stepping method for soil water distribution

Groundwater and Water Table Dynamics

- bulk aquifer layer
- bedrock (zero vertical flux) lower boundary

zero flux

Soil Depth

- deep soil / variable soil depth
- high vertical resolution soil

_	-	-	-	-	-	-	-	_	-	_	-	-	-	_	-	_	_	-	-	_
_	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	_	-	-	_	-
_	-	-	_	_	-	-	-	-	_	_	_	-	_	-	_	_	-	-	-	-
_	-	-	-	_	_	_	-	-	-	_	_	_	-	-	-	_	_	_	-	_
_	-	-	-	_	_	-	-	-	-	_	-	-	-	_	-	_	-	_	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
-	-			-	-					-	-									-
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	_		I	I	I	l	I	I	I	I	I	I	l	I	I	I	I	I	I	I
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_			_		_	_				_		_			_			_
_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
_		_			_		_	_				_		_			_			_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	_	-	_	_	-	_	-	-	_	_	_	-	_	-	_	_	-	_	_	-
																				_
_	_	-	_	_	-	_	-	-	_	_	_	_	_	-	_	_	-	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_		_	_				_		_			_			_
_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
	-		-	_	_	-			_	_	-		_		-	_	_	-	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
			_	_		_			_	_	_		_		_	_		_	_	
-	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_			_		_	_				_		_			_			_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
																				- 7
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	-	_	_	-	-	_	_	_	_	-	_	_	_	_	_	-	_	_
	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	_	-	-	-	_
	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_		_	_	
-	-	-	-	<u> </u>	-	_	-	-	-	-	-	-	-	-	_	-	-	_	-	-
_	h		_	_	-		_		_		_	_	_	_		_	_	_		-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
		-		-	-		-	-		-	-		-	-		-	-		-	
				_		_			_	_	_		_		- C.	_		_	_	
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	
									-											
-		-	_	_	-	_	-	-	_	_	_	-	_	-	_	_	-	_	_	-
	_		_	_	-	_	_	-	_	_	_	_	_	-	_	-	-	_	_	
	_	_		-	-	-														
_	-	-																		
_	=	-	_	_	_							-		-			-			
_	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PRELIMINARY GLOBAL MAP OF DTB ESTIMATES

Overall Depth to Bedrock (~1 km resolution)

Slide courtesy M.Brunke, U. Arizona

Model Validation Tools

Ideally, should be:

- Global
- Directly comparable to modeled process/state/flux
- Same spatial / temporal scale
- High accuracy
- Long record

In reality, no datasets meeting these criteria exist...

0.50

0.01

Soil Moisture Networks

Top panel: CLM soil moisture Bottom: Observed soil moisture

River Discharge

FLUXNET-MTE

Annual Mean Evapotranspiration

Top panel: FLUXNET-MTE Bottom: CLM

FLUXNET-MTE

Columbia River Basin Evapotranspiration

Red: FLUXNET-MTE Blue/Green: CLM

GRACE Total Water Storage

Ø

Mean Annual Amplitude of **Total Water Storage**

Top panel: GRACE Bottom: CLM

GRACE Total Water Storage

Columbia River Basin Total Water Storage

Red: GRACE Blue/Green: CLM

CLM Application Example: Anthropogenic Groundwater Withdrawal

Smoothed

GRACE - CLM4

NW Inde

Human-induced groundwater changes can be estimated by removing the CLM estimate of TWS from the GRACE estimate of TWS

GRACE TWSCLM TWSGroundwater

Example I Effects of Parameter Change

Hydrologically Relevant Surface Data

Hydrologically Relevant Surface Data

Time Series

Precipitation

1.00

0.85 0.70 0.55 0.40

0.25

0.10

Water Table

The water table determines the fraction of the area that is saturated

Saturated areas produce surface runoff

Example: Effects of Modifying the Water Table

ΔZWT = Qdrainage - Qrecharge

Qdrainage = A exp(-f z)

Qsurface = F exp(-g z) Pthroughfall

Runoff

Water Table

Example II Model Structural Change

GRACE Water Storage Comparison

GRACE Water Storage Comparison

Spatially Variable Soil Depth

GRACE Water Storage Comparison

Current and Future Challenges

- Subgrid heterogeneity and covariance of vegetation, soil moisture, surface water and snow
- Within-canopy turbulent fluxes
- Human management and withdrawals
- Groundwater dynamics
- Dynamic lakes
- Hydrological response to land cover change

