

CESM1.2.2 tutorial: WACCM and CAM-chem

Mike Mills WACCM Liaison <u>mmills@ucar.edu</u> August 15, 2015 Simone Tilmes CAM-chem Liaison <u>tilmes@ucar.edu</u>

- CESM-WACCM and CAM-chem component configurations
- Quickstart guide for present-day chemistry compsets
- Exercise 1: Run WACCM or CAM-chem with new daily output
- Exercise 2: Change reaction rate in the chemical mechanism
- Post-processing data analysis using goev
- Validating CESM/WACCM
- WACCM & CAM-chem customer support

WACCM /CAMChem component configurations

WACCM /CAMChem component configurations

WACCM component configurations

Find scientifically validated compsets here:

http://www2.cesm.ucar.edu/models/scientifically-supported

CESM1.2.2 (WACCM) Compsets	Supported Grids	Components / Meteorology
Full ocean, static: B_1850_WACCM_CN (B1850WCN) B_2000_WACCM_CN (BWCN)	f19_g16	CLM4.0/CN pre-industrial
Full ocean, transient: B_1850-2005_WACCM_CN (B20TRWCN) B_1955-2005_WACCM_CN (B55TRWCN) B_RCP2.6_WACCM_CN (BRCP26WCN) B_RCP4.5_WACCM_CN (BRCP45WCN) B_RCP8.5_WACCM_CN (BRCP85WCN)	f19_g16	CLM4.0/CN annual solar variability daily solar variability daily solar variability daily solar variability daily solar variability daily solar variability
Data ocean, static: F_1850_WACCM (F1850W) F_2000_WACCM (FW) F_2000_WACCM_SC (FWSC) F_2000_WACCMX (FWX) F_1996_WACCMX (FWX1996)	f19_f19, f45_f45	CLM4.0 pre-industrial present day specified chemistry thermosphere extension, solar max thermosphere extension, solar min
Data ocean, transient: F_1955-2005_WACCM_CN (F55WCN) FGEOS_C4WCM_L40CN (FSDW)	f19_f19, f45_f45	CLM4.0/CN, daily solar variability GEOS5 nudging

CAMChem component configurations

Find scientifically validated compsets here:

http://www2.cesm.ucar.edu/models/scientifically-supported

Compsets CESM1.2.2. for res: 1.9x2.5	Model (phys)/ radiation	Chemistry	Components / Meteorology	
B_2000_TROP_MOZART (BMOZ) B_2000_MOZSOA_CN B_2000_MOZMAM_CN (BMOZMAM)	CAM4, active f19_g16	trop_mozart +soa chemistry trop_mozart mam	All active + CLM/CN All active, CLM/CN	
F_2000_MOZMAM_CN (FMOZMAM) F_SD_BAM_CN	CAM4 passive f19_f19	trop_mozart trop_bam	Prescr. ocn/ice, CLM/CN	
B_2000_CN_CHEM (B2000CNCHM) B_1850_CN_CHEM (B1850CNCHM) B_1850-2000_CN_CHEM (B20TRCNCHM)	CAM4, active	super_fast_llnl	MEGAN VOC emis, all active CLM/CN	
F_1850_CN_CHEM (F1850CNCHM)	CAM4, passive		Prescr. ocn/ice, CLM/CN	
Data ocean, static/transient: F2000_C4SSOA_L40 (FSSOA) FGEOS_C4SSOA_L40 (FSDSSOA) F2000_STRATMAM3_CN FGEOS_STRATMAM3_CN F_2000_STRATMAM7_CN	CAM4, passive f19_f19 CAM5, passive CAM5 passive	trop_strat +soa chemistry trop_strat mam+soa chemistry trop_strat mam7+soa chemistry	Prescr. ocn/ice, MEGAN GEOS5 met. Prescr. ocn/ice, CLM/ CN, GEOS5 met. Prescr. ocn/ice, CLM/CN	Scientifically validated in CESM1.2.2
		enemistry		

Exercise 1: Run a present-day WACCM/CAMChem compset

- Go to the script directory in your source code
- Run create_newcase command for one of these compsets: COMPSET: longname (shortname): WACCM: F_2000_WACCM (FW)
- or

CAM-chem: F_2000_TROP_MOZART (FSSOA)

RESOLUTIONS: name (shortname): 1.9x2.5_1.9x2.5 (f19_f19)

CASENAME: ~/f2000.FW.f19_f19.001 or ~/f2000.FSSOA.f19_f19.001

- Go to your case directory and setup and build the model
- Add second output stream (fincl2): daily instantaneous values of: 'PS','Z3','T','U','V','O3'
- Run the model for 5 days
- Check your model output in your run directory

Exercise 1: Run a present-day WACCM/CAMChem compset

Important! Check the newly generated namelist prior run >ls CaseDocs/*

atm_in	cpl_modelio.nml	drv_flds_in	ice_modelio.nml	README	wav_modelio.nml
atm_modelio.nml	docn_in	drv_in	lnd_in	rof_in	
chem_mech.doc	docn_ocn_in	glc_modelio.nml	lnd_modelio.nml	rof_modelio.nml	
chem_mech.in	docn.streams.txt.prescribed	ice_in	ocn_modelio.nml	seq_maps.rc	

- atm_in: atmospheric namelist varliables
- chem_mech.in: chemical mechanism file
 - drv_flds_in: dry deposition variables, MEGAN variables (if used)
 - Ind_in: land namelist variables

...

- Setup a new case as done in Exercise 1, rename the case to ~/f2000.FW.f19_f19.test1 or ~/f2000.FSSOA.f19_f19.test1
- Look at your chemistry preprocessor file chem_mech.in in CaseDocs and copy it to your case directory

The chemical preprocessor and the mechanism file

The **chemistry preprocessor**: generates CAM Fortran source code to solve chemistry.

- Input: a simple ASCII file listing chemical reactions and rates.
- The chemistry preprocessor input file used in your previous run is in your \$CASEROOT/CaseDocs/ chem_mech.in

Additional input files for default chemical mechanisms are in each source code subdirectory for mechanisms under \$CCSMROOT/ models/atm/cam/src/chemistry/ pp_* (i.e. pp_waccm_mozart)

SPECIES Solution 03, 0, 01D -> 0, 02, 02_1S -> 02, 02_1D -> 02 End Solution

Fixed

M, N2 End Fixed End SPECIES

Solution Classes
Explicit
CH4, N2O, CO, H2, CH3CL, CH3BR, CFC11, CFC12
End explicit
Implicit
03, 0, 01D, 02, 02_1S, 02_1D
End implicit
End Solution Classes

CHEMISTRY Photolysis [jo2_a] 02 + hv -> 0 + 01D End Photolysis

```
Reactions
[cph1,cph] 0 + 03 -> 2*02 ; 8e-12, -2060
End Reactions
END CHEMISTRY
```


Reaction rate types in the chempp input file

• Temperature-independent rates: k [cm³ molec⁻¹ s⁻¹]= a₀

O1D + H2O -> 2*OH

• Arrhenius type: $k = a_0 * \exp(b_0/T)$, where $b_0 = (-E/R)$

0 + 03 -> 2*02

; 2.2e-10

; 8e-12, -2060

• Troe rate constant: $k = \alpha^{x} / (1 - \beta^{2})$, where:

 $\begin{aligned} \alpha &= k_0^* M/k_{\infty}, \quad \beta = \log_{10}(\alpha), \quad M = \text{ air density (molec cm}^{-3}), \quad T = \text{temperature (K)} \\ & k_0 &= a_0^* (300/T)^{**} a_1, \quad k_{\infty} = b_0^* (300/T)^{**} b_1, \quad x = \text{``exponential factor''} \end{aligned}$

[usr11] CH3CO3 + NO2 + M -> PAN + M ; 8.5e-29, 6.5, 1.1e-11, 1., .6 a_0 , a_1 , b_0 , b_1 , X

• User-specified reaction rate:

[usr1] O + O2 + M -> O3 + M

rate defined in routine mo_usrrxt.F90

For CAM-chem: •Change reaction rates (bug in earlier version)

Reactions		
* Odd-Oxygen Rea	actions	
*02] [0_03] [usr_0_0]	0 + 02 + M -> 03 + M 0 + 03 -> 2*02 0 + 0 + M -> 02 + M	; 8.00e-12, -2060. Change to 1.65e-12 (bug in earlier version)
* Odd-Oxygen Rea	actions (01D only)	
<pre>(01D_N2) [01D_02b] [0x_l1] [01D_N20a] [01D_N20b]</pre>	01D + N2 -> 0 + N2 01D + 02 -> 0 + 02 01D + H20 -> 2*0H 01D + N20 -> 2*N0 01D + N20 -> N2 + 02	; 2.15e-11, 110. ; 3.30e-11, 55. ; 1.63e-10, 60. ; 7.25e-11, 20. ; 4.63e-11, 20.

•Check your new mechanism file:

>less CaseDocs/chem_mech.in
•Edit env_build.xml

For WACCM: •Change reaction rates (bug in earlier version)

	Remove this line (bug in CAMchem)				
<pre>** Odd-Oxygen Reactions (01D only) *</pre>					
<pre>(cph_01D_N2,cph) 01D + N2 -> 0 + N2 (cph_01D_02,cph) 01D + 02 -> 0 + 02 1S</pre>	; 2.15e-11, 110. ; 3.135e-11, 55.				
$[cph_{01D_{0}2b,cph}] 01D + 02 -> 0 + 02 01D + H20 -> 2*0H$; 1.65e-12, 55.				
01D + N20 -> 2*N0 01D + N20 -> N2 + 02	; 6.70e-11, 20. ; 4.70e-11, 20.				

Check your new mechanism file: >less CaseDocs/chem_mech.in
Edit env_build.xml

•Edit the file env_build.xml in the case directory to add the CAM configure option - usr_mech_infile pointing to the new preprocessor input file:

<!--"CAM configure options, see CAM configure utility for details (char) " --> <entry id="CAM_CONFIG_OPTS" value="-phys cam4 -chem trop_strat_soa –age_of_air_trcs -usr_mech_infile \$CASEROOT/my_chem_mech.in" />

•Re-setup and rebuild your run:

- •Check your new mechanism file
- •submit the new run
- •Check output and compare 5th day output to earlier run using geov

Post-processing data analysis: geov

CESM history files are in standard netCDF format, and may be analyzed with standard analysis tools, including Matlab, IDL, NCL, and NCO.
 GEOV is an IDL-based viewer for geophysical history files created by NCAR's CAM, WACCM and MOZART models. GEOV can be downloaded from the WACCM webpage http://www.cesm.ucar.edu/working_groups/WACCM/

Or install geov on yellowstone: •Logon to yellowstone (or caldara or geyser): > ssh -X yellowstone.ucar.edu

Edit .cshrc file. Add line: setenv IDL_STARTUP ~fvitt/idl_startup ~fvitt/idl_startup sets the idl path to include GEOV: idl_path = expand_path('+~fvitt/geov') !path=!path+':'+idl_path >source .cshrc >idl geov

View model output on yellowstone:
> cd /glade/scratch/\$USER/archive/run
> idl geov

Post-processing data analysis

CESM history files are in standard netCDF format, and may be analyzed with standard analysis tools, including Matlab, IDL, NCL, and NCO.
 GEOV is an IDL-based viewer for geophysical history files created by NCAR's CAM, WACCM and MOZART models. GEOV can be downloaded from the WACCM webpage http://www.cesm.ucar.edu/working_groups/WACCM/

Post-processing data analysis

CESM history files are in standard netCDF format, and may be analyzed with standard analysis tools, including Matlab, IDL, NCL, and NCO.
 GEOV is an IDL-based viewer for geophysical history files created by NCAR's CAM, WACCM and MOZART models. GEOV can be downloaded from the WACCM webpage http://www.cesm.ucar.edu/working_groups/WACCM/

Post-processing data analysis

AMWC Diagnostics Plots

CAM diagnostic packages are described under CAM Post-Processing Utilities on the CAM documentation page at http:// www.cgd.ucar.e du/amp/amwg/ diagnostics/.

AMWG Diagnostics Package b40.1850.track1.2deg.wcm.007

+ Chttp://www.cgd.ucar.edu/cms/fischer/AMWG_diag/b40.1850.track1.2deg.wcm.007-obs/

AMWG Diagnostics Plots

Plots Created Wed Apr 28 11:14:06 MDT 2010

8 2

C Q. Coogle

Set Description

000

- Click on Plot Type 1 Tables of ANN, DJF, JJA, global and regional means and RMSE.
- 2 Line plots of annual implied northward transports.
- 3 Line plots of DJF, JJA and ANN zonal means
- 4 Vertical contour plots of DJF, JJA and ANN zonal means 4a Vertical (XZ) contour plots of DJF, JJA and ANN meridional means
- 5 Horizontal contour plots of DJF, JJA and ANN means
- 6 Horizontal vector plots of DJF, JJA and ANN means
- 7 Polar contour and vector plots of DJF, JJA and ANN means
- 8 Annual cycle contour plots of zonal means
- 9 Horizontal contour plots of DJF-JJA differences
- 10 Annual cycle line plots of global means
- 11 Pacific annual cycle, Scatter plot plots
- 12 Vertical profile plots from 17 selected stations
- 13 ISCCP cloud simulator plots
- 14 Taylor Diagram plots
- 15 Annual Cycle at Select Stations plots

Post-processing data analysis

Diagnostic packages for all model components (atmosphere, land, ice, and ocean) can be found from the <u>component post-processing utilities page</u> (http://www.cesm.ucar.edu/models/cesm1.2/model_diagnostics/).

Validating CESM/WACCM

Users may validate their implementation of CESM/WACCM by repeating experiments we have done at NCAR, and using the <u>component post-processing utilities</u> to compare the climate generated to output we have made available publicly on the Earth System Grid (http://www.earthsystemgrid.org).

Please visit our <u>CESM 1.0 experiments and diagnostics page</u> (http:// www.cesm.ucar.edu/experiments/cesm1.0/) for an updated list of experiments with links to output data locations.

Output from additional experiments will be made available on a timeline in

				-	-		-	-
CESM1 (WACCM) 2° Pre-Industrial Control Case Name: b40.1850.track1.2deg.wcm.007 Data Availability: ESG (years 156-185)		156-185 w/observations		Ice	Land	Ocean	CCR	Ocean Timeseries
CESM1 (WACCM-X) 2° Present Day Control Case Name: f.e10.FWX.f19_f19.control.001 Data Availability: CESM		2001 w/observations		Ice	Land			
NSI	Case Name: b40.1850.track1.2deg.wcm.007 Machine: NCAR:bluefire CMIP5 ID: Compset: B 1850 WACCM CN Resolution: 1.9x2.5 gx1v6 Years: 96-295 Time Frequencies Saved: Monthly, Daily, Subdaily Initialization: year 156 Start/End Dates: 4/16/10, at year 260 as of 3/1/11 Data Release Date (Full): 11/1/11		Case Name: f.e10.FWX.f19_f19.control.001 Machine: NCAR:bluefire CMIP5 ID: Compset: F_2000_WACCMX (publicly available 2/21/12) Resolution: 1.9x2.5_1.9x2.5 Years: 1/2001-2/2002 Time Frequencies Saved: Monthly, Daily, Subdaily Initialization: startup run type Start/End Dates: 2/8/12, ongoing Data Release Date (Full): 2/17/12					

WACCM and CAM-Chem Customer Support

CGD Forum: <u>http://bb.cgd.ucar.edu</u>/

Mike Mills WACCM Liaison mmills@ucar.edu (303) 497-1425

Simone Tilmes CAM-chem Liaison tilmes@ucar.edu (303) 497-1445

Solution 1: Run a present-day WACCM/CAMChem compset

- Go to the script directory in your source code
 > cd /glade/p/cesm/tutorial/cesm1_2_2.tutorial/scripts
- Run create_newcase command for one of these compsets:

>create_newcase -res f19_f19 -case ~/f2000.FW.f19_f19.001 -compset FW -mach yellowstone

or

>create_newcase -res f19_f19 -case ~/f2000.FSSOA.f19_f19.001 -compset FSSOA - mach yellowstone

- Go to your case directory and setup the run
- Setup the model

>cesm_setup

- Build the model
- -> namelists (atm_in, ice_in, Ind_in, docn_in) will appear in the CaseDocs subdirectory, as well as in your \$rundir
- >*build

Solution 1: How do I change model output?

• Update the user_nl_cam file in your \$casedir and add/change the fincl2 output

```
> nedit user_nl_cam
```

```
! Users should add all user specific namelist changes below in the form of
! namelist_var = new_namelist_value
&cam_inparm
avgflag_pertape = 'A', 'I',
fincl2 = 'PS', 'Z3', 'T', 'U', 'V','03'
mfilt = 1, 10
nhtfrq = 0, -24
/
```

• Preview namelists and make sure changes are in your CaseDocs/atm_in file

>preview_namelists

Check your CaseDocs/atm_in

>less CaseDocs/atm_in (check your atm_in file)

Resubmit your job

>*.submit (run the model for 5 days)

Solution 1: Check your model output

find your model output in your run dir (\$run_dir) after finished:
 >ls /glade/scratch/<username>/<casename>/run

```
[tilmes@yslogin1 run]$ ls
atm in
                                                      f2000.FSSOA.f19_f19.001.rtm.rh0.0001-01-06-00000.nc
atm_modelio.nml
                                                      glc_modelio.nml
cpl_modelio.nml
                                                      ice_in
                                                                                namelist information
docn_in
                                                      ice_modelio.nml
docn_ocn_in
                                                      lnd_in
                                                      lnd_modelio.nml
docn.streams.txt.prescribed
drv_flds_in
                                                      ocn_modelio.nml
drv_in
                                                      rof_in
f2000.FSS0A.f19_f19.001.cam.h1.0001-01-06-00000.nc
                                                      rof_modelio.nml
f2000.FSS0A.f19_f19.001.cam.r.0001-01-06-00000.nc
                                                      rpointer.atm
f2000.FSS0A.f19_f19.001.cam.rh0.0001-01-06-00000.nc
                                                      rpointer.drv
f2000.FSSOA.f19_f19.001.cam.rs.0001-01-06-00000.nc
                                                      rpointer.ice
f2000.FSSOA.f19_f19.001.cice.r.0001-01-06-00000.nc
                                                      rpointer.lnd
                                                                            restart information
f2000.FSSOA.f19_f19.001.clm2.r.0001-01-06-00000.nc
                                                      rpointer.ocn
f2000.FSS0A.f19_f19.001.clm2.rh0.0001-01-06-00000.nc
                                                      rpointer.rof
f2000.FSS0A.f19_f19.001.cpl.r.0001-01-06-00000.nc
                                                      seq_maps.rc
f2000.FSS0A.f19_f19.001.docn.rs1.0001-01-06-00000.bin timing
f2000.FSS0A.f19_f19.001.rtm.r.0001-01-06-00000.nc
                                                      wav_modelio.nml
```

- find our model output in the short-time archive >ls /glade/scratch/<username>/archive/<casename>/... (note: there will be no monthly values available if you just run for 5 days)
- long-time archive your job if needed (do not archive what you don't need for a long time)
- check your cam.h1 file
- > ncdump -h f2000.FSSOA.f19_f19.001.cam.h1.0001-01-06-00000.nc

Solution 2: Building the model with new chemistry

- Setup a new case as done in Exercise 1, rename the case to ~/f2000.FW.f19_f19.test1 or ~/f2000.FSSOA.f19_f19.001 (follow Solution 1, just rename your case)
- Look at your chemistry preprocessor file chem_mech.in in CaseDocs and copy it to your case directory and rename to my_chem_mech.in
- Copy a sample preprocessor input file to the case directory and edit it: >cd \$CASEROOT

>cp CaseDocs/chem_mech.in my_chem_mech.in
>nedit my_chem_mech.in &

(use any editor to edit your script)

Reactions			
* * Odd-Oxygen Rea	ctions		
* [usr_0_02] [0_03] [usr_0_0]	0 + 02 + M -> 03 + M 0 + 03 -> 2*02 0 + 0 + M -> 02 + M	; 8.00e-12, -2060. Change to 1.65e-12 (bug in earlier versior	ר)
* * Odd-Oxygen Rea	ctions (01D only)		Ĩ
[01D_N2] [<mark>01D_02b</mark>] [ox_l1] [01D_N20a] [01D_N20b]	01D + N2 -> 0 + N2 01D + 02 -> 0 + 02 01D + H20 -> 2*0H 01D + N20 -> 2*N0 01D + N20 -> N2 + 02	; 2.15e-11, 110. ; 3.30e-11, 55. ; 1.63e-10, 60. ; 7.25e-11, 20. ; 4.63e-11, 20.	

Solution 2: Building the model with new chemistry

•Edit the file env_build.xml in the case directory to add the CAM configure option - usr_mech_infile pointing to the new preprocessor input file:

<!--"CAM configure options, see CAM configure utility for details (char) " --> <entry id="CAM_CONFIG_OPTS" value="-phys cam4 -chem trop_strat_soa -age_of_air_trcs -usr_mech_infile \$CASEROOT/my_chem_mech.in" />

```
<!--"CAM configure options, see CAM configure utility for details (char) " -->
entry id="CAM_CONFIG_OPTS" value="-phys cam4 -chem trop_strat_soa -age_of_air_trcs -usr_mech_infile
/glade/u/home/tilmes/f2000.FSSOA.f19_f19.001/my_chem_mech.in" />
```

•Re-setup and rebuild your run:

- >cesm_setup -clean
- >cesm_setup
- >*.clean_build
- >*. build
- •Check your new mechanism file:
 - >less CaseDocs/chem_mech.in
- •submit the new run
 - >*submit
- •Check output after the run
 - >ls /glade/scratch/<username>/archive/<casename>/...
 - 1

Solution 2: Building the model with new chemistry

• Compare your output with the other run, using geov

