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NO3	(a	nutrient),	O2	(dissolved	gas)	
Along	Pacific	Transect	



DIC	(~CO2)	Along	Same	Pacific	Transect	



Takahashi	Air-Sea	CO2	Gas	Flux	



Primary	Processes	Governing	DistribuCon	of	
Nutrients,	O2,	Carbon,	etc.	

•  Biological	ProducCvity	in	EuphoCc	Zone	
–  Consumes	Nutrients	&	Inorganic	Carbon	
–  Produces	Organic	MaZer	&	O2	

•  Export	of	Organic	MaZer	out	of	EuphoCc	Zone	
–  Sinking	ParCcles	(e.g.	detritus,	CaCO3	shells,	…)	
–  CirculaCon	of	Suspended	MaZer	

•  RemineralizaCon	of	Organic	MaZer	
–  ‘reverse’	of	producCvity,	consumes	O2	

•  General	CirculaCon	
– AdvecCve	Transport	
–  Lateral	&	VerCcal	Mixing	

•  Temperature	Dependent	Air-Sea	Gas	Exchange	



Other	Processes,	Smaller	Global	Impact,	
Regionally	Significant	

•  Atmospheric	Nutrient	DeposiCon	
– Fe,	N,	P,	…	

•  Sedimentary	Burial	
•  Riverine	Inputs	

•  Nitrogen	FixaCon	
– Conversion	of	dissolved	N2	gas	into	NH4	

•  DenitrificaCon	
– ConsumpCon	of	NO3	during	remineralizaCon	



What	is	an	NPZD	model?	

N 	Nutrient	
	 	nitrate,	ammonium,	
	 	phosphate,	silicate,	iron,	etc.	

P 	Phytoplankton	
	 	photosynthesizers	

Z 	Zooplankton	
	 	grazers	

D 	Detritus	
	
Canonical	Example	
Fasham,	Ducklow,	McKelvie,	J	Mar.	
Res.,	Vol.	48,	pp.	591-639,	1990.	
	
Many	more	variaCons	are	used…	 Fasham	model	diagram	from	www.gotm.net	





How	do	you	esCmate	parameters	and	
funcConal	forms?	

•  Laboratory	&	field	incubaCons	
– P-I	curves	
– Nutrient	uptake	curves	

•  Tune/OpCmize	against	field	data	
•  Previous	Models	



Plankton	FuncConal	Types	(PFTs)	

•  Categorize	plankton	species	by	how	they	funcCon	
and	use	representaCve	types/groups	

•  Example	definiCon	from	Le	Quéré	et	al.,	Global	
Change	Biology,	Vol.	11,	pp.	2016-2040,	2005.	
– Explicit	biogeochemical	role	
– Biomass	and	producCvity	controlled	by	disCnct	
physiological,	environmental,	or	nutrient	
requirements	

– Behavior	has	disCnct	effect	on	other	PFTs	
– QuanCtaCve	importance	in	some	region	of	the	ocean	



Skill	&	Portability	in	
12	Different	NPZD	
models	
Friedrichs	et	al.,	JGR-
Oceans,	2007.	

(b)	Simple	models	do	just	
as	well	as	more	complex	
models	when	tuned	for	
specific	sites.	
(c)	More	complex	models	
do	beZer	at	mulCple	sites	
with	single	parameter	sets.	
(d)	More	complex	models	
perform	beZer	at	different	
sites	when	tuned	for	one	
site.	

untuned	 tuned	per	site	

tuned	at	both	sites	
simultaneously	

run	at	one	site	with	
tuning	from	other	



Doney	et	al.		
(J.	Mar.	Systems,	2009)	

CCSM	BEC	model	

Moore,	Doney,	Lindsay,	Global	
Biogeochemical	Cycles,	2004.		
Moore	et	al.,	J	Climate,	2013.	



Primary	Features	of	CESM1	BEC	Model	

•  Nutrients:	N,	P,	Si,	Fe	
•  4	Plankton	FuncConal	Groups	
–  3	Autotrophs,	1	Grazer	
–  Implicit	coccolithophores	
–  24	tracers	in	CESM	1.0,	1.1	
–  27	tracers	in	CESM	1.2	

•  Fixed	C:N:P	raCos	in	plankton	
•  Variable	Fe:C,	Si:C,	Chl:C	raCos	

•  Numerous	enhancements	introduced	in	CESM	1.2	
–  Reduce	excessively	large	OMZ	bias	
–  Improved	treatment	of	DOM	



Known	Gaps	in	Ocean	BGC	in	CESM1-(BGC)	

•  CalcificaCon	&	CaCO3	remineralizaCon	rates	are	
independent	of	CO3	saturaCon	state	

•  No	riverine	inputs	of	BGC	tracers	
– Prescribed	datasets	introduced	in	1.2	

•  No	sediment	model	
– Loss	to	sediments	introduced	in	1.2	

•  No	treatment	of	BGC	in	sea-ice	

•  Focus	in	on	lower	trophic	levels	



Model	ValidaCon:	Examples	of	Data	Sets	

•  Macronutrients	(PO4,	NO3,	SiO3)	and	O2	from	
World	Ocean	Atlas	

•  DIC,	ALK	from	GLODAP	Analysis	
•  pCO2	and	CO2	Flux	assembled	by	Takahashi	
•  Surface	Chl	measured	by	satellite	
•  ProducCvity	esCmated	from	satellite	
•  JGOFS	study	sites	
•  HOTS	&	BATS	Cmeseries	



Air-sea	CO2	Flux	

Doney	et	al.	(Deep-Sea	Res.	II,	2009)	

model	

observaCons	



Known	Challenges	

•  OpCmize	BGC	model	parameters	
– FuncConal	group	approach	increases	uncertainty	
of	parameters	(i.e.	mulCple	species,	with	different	
characterisCcs,	are	clumped	together)	

– Don’t	want	to	overtune	too	much	to	compensate	
for	biases	in	physical	model	

•  Given	BGC	model	parameters	and	physical	
circulaCon,	generate	balanced	BGC	state	
– Need	to	deal	w/	diurnal	to	millenial	Cmescales	
– Using	Newton-Krylov	for	this	is	a	work	in	progress	



Large	Scale	Global	Carbon	Cycle	

Figure	courtesy	PMEL	



20th	Century	
CO2	Fluxes	into	
Atmosphere	in	
CESM1(BGC)	

	
(a)	Total	

(b)	Fossil	Fuels	
(c)	Sea-to-Air	
(d)	Land-to-Air	

Lindsay	et	al.,	2014,	J	Clim	



20th	Century	
CO2	Fluxes	into	
Atmosphere	in	
CESM1.2+(BGC)	

	
(a)	Total	

(b)	Fossil	Fuels	
(c)	Sea-to-Air	
(d)	Land-to-Air	



Seasonal	Cycle	of	CO2,	CESM1(BGC)	

Point	Barrow,	Alaska	 Mauna	Loa,	Hawaii	

Palmer	StaCon,	AntarcCca	 South	Pole	

Lindsay	et	al.,	2014,	J	Clim	



Seasonal	Cycle	of	CO2,	CESM1.2+(BGC)	

Point	Barrow,	Alaska	 Mauna	Loa,	Hawaii	

Palmer	StaCon,	AntarcCca	 South	Pole	



Atmospheric	
CO2	in	CMIP5	
Earth	System	

Models	

Hoffmann	et	al,	JGR-BGS,	2013	

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381

ESM Historical Atmospheric CO2 Mole Fraction
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Figure 1. (a) Most ESMs exhibit a high bias in atmospheric carbon dioxide
(CO2) mole fraction. The predicted atmospheric CO2 mole fraction for the 19
historical simulations shown here ranges from 357 to 405 ppm at the end of
the CMIP5 historical period (1850–2005). (b) The multimodel mean is biased
high from 1946 throughout the remainder of the twentieth century, ending
5.6 ppm above observations in 2005.

century (Figure 1b). By the end of the his-
torical model simulation period (2005),
the multimodel mean was 5.6 ppm above
observations and the models ranged from
21.7 ppm below to 26.2 ppm above the
observed CO2 mole fraction of 378.8 ppm.
Of the 19 historical simulations from 15
ESMs included in this analysis, only two
predicted a CO2 mole fraction well below
observations in 2005. By 2010, near the end
of the observational record, the multimodel
mean was 7.9 ppm higher than the global
mean CO2 mole fraction reported by NOAA
GMD [Conway et al., 1994]. This bias was
probably a conservative estimate of the true
multimodel mean bias because fossil fuel
emissions from the RCP 8.5 scenario during
2006–2010 (8.6 Pg C yr−1) were slightly lower
than the observed emissions (8.7 Pg C yr−1)
[Peters et al., 2013; Le Quéré et al., 2013].

3.2. Causes of the Contemporary Bias
Most ESMs exhibited a small or moderate
low bias in ocean carbon accumulation from
1870 to 1930 when compared with adjusted
estimates from Khatiwala et al. [2013], but
most ESMs were contained within the enve-
lope of observational uncertainty after 1930
(Figure 2a). Ocean carbon accumulation
ranged from 88 to 261 Pg C, with a multi-

model mean of 145 Pg C, as compared with observational estimates of 142 ± 38 Pg C through year 2010.
Excluding the two outlier models that had unlikely land contemporary sink estimates (FGOALS-s2.0 and
MRI-ESM1), the range of ocean carbon accumulation was reduced to 101–210 Pg C with a mean of 141 Pg C
at 2010, a better match with observations. However, most ocean models achieved this correspondence
with observational estimates primarily as a consequence of high biases in atmospheric CO2 mole fraction.
Normalizing ocean carbon accumulation with atmospheric accumulation

(
ΔCO

ΔCA

)
provided a measure of

the strength of ocean carbon storage in emissions-forced simulations that partially accounted for atmo-
spheric CO2 biases. Performing this normalization and comparing with adjusted ocean inventories from
Sabine et al. [2004] for 1994 (Figure S2) and from Khatiwala et al. [2013] for 2010 (Figure 3) indicated that the
majority of models were near or below the observed ratio. Across the different models, the ocean/
atmosphere ratio ranged from 0.42 to 0.99, with a multimodel mean of 0.61, which compared well with the
observational estimate of 0.64 ± 0.15 in 2010. Excluding the same two outlier models (FGOALS-s2.0 and
MRI-ESM1), the range of the ocean/atmosphere ratio was reduced to 0.42–0.91, with a mean of 0.58.

Terrestrial biosphere models within ESMs also had a wide range of responses, with both positive and neg-
ative net carbon accumulation throughout the twentieth century (Figures 3 and S2). Terrestrial and ocean
carbon accumulation compensated for one another (R = −0.91, Figure S3), reducing the bias in predicted
atmospheric CO2. This compensation effect was exemplified by the INM-CM4 model, which had the correct
atmospheric CO2 in 2005, but had strong ocean uptake that was balanced by weak land carbon uptake. Dur-
ing the second half of the twentieth century, the land carbon sink was persistent with high rates during the
1990s and 2000s (Table 2). Thought to be due to changes in human land use (i.e., reduced deforestation,
new afforestation, and secondary regrowth of previously cleared land), wildfire suppression [Girod et al.,
2007; Hurtt et al., 2002], and enhanced forest growth due to rising atmospheric CO2 levels and higher rates
of nitrogen deposition [Pan et al., 2011; Phillips et al., 2009], this growing land sink reinforced rising ocean
uptake rates and resulted in a doubling of global carbon uptake between 1960 and 2010 [Ballantyne et al.,

HOFFMAN ET AL. ©2013. The Authors. 149



Ocean	and	
Land	Carbon	
AccumulaCon	
in	CMIP5	Earth	
System	Models	

Hoffmann	et	al,	JGR-BGS,	2013	

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381

ESM Historical Ocean and Land Carbon Accumulation
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Figure 2. (a) Ocean and (b) land anthropogenic carbon inventories from
CMIP5 models compared to estimates from Khatiwala et al. [2013]. Most
ESMs exhibit a low bias in ocean anthropogenic carbon accumulation from
1870 to 1930 as compared with adjusted estimates from Khatiwala et al.
[2013]. While some models enter the envelope of observational uncer-
tainty later in the twentieth century, this was often a consequence of the
increasing high bias in atmospheric CO2 mole fractions. ESMs had a wide
range of land carbon accumulation responses to increasing atmospheric
CO2 and land use change, ranging from a cumulative source of 170 Pg C to
a cumulative sink of 107 Pg C in 2010. In these figures, solid colored lines
represent historical simulation results and the extending dashed line seg-
ments represent the first 5 years of the RCP 8.5 simulations. The shaded
polygon represents the uncertainties surrounding the adjusted observational
estimates of ocean and land carbon accumulation, and the error bars corre-
spond to the ±20% uncertainty in the Khatiwala et al. [2013] best estimate
of ocean carbon accumulation for 2010.

2012]. Although the multimodel mean dis-
tribution of land sinks closely matched the
observations, individual model estimates
varied widely. BCC-CSM1.1-M, CESM1-BGC,
FGOALS-s2.0, GFDL-ESM2M, HadGEM2-ES,
INM-CM4, and NorESM1-ME tended to
underestimate land sinks, whereas CanESM2
and MRI-ESM1 tended to overestimate them
(Figure 2b).

3.3. Implications of Contemporary
Atmospheric CO2 Biases in CMIP5 Models
High atmospheric CO2 biases produced
radiative forcing during the latter half of
the twentieth century that was too large
in the affected ESMs (Table 3). For the year
2010, the multimodel mean atmospheric
CO2 mole fraction was 7.9 ppm above
observations, corresponding to a radia-
tive forcing that was 0.10 W m−2 higher
than that obtained from the observed
atmospheric CO2 mole fraction. The inte-
grated effect of the radiative forcing bias
from the multimodel mean during the
nineteenth and twentieth centuries led
to CO2-induced temperature change that
was 0.06◦C higher by 2010 than an esti-
mate derived from the observed CO2

trajectory. Across all ESMs, the temperature
change bias for 2010 ranged from −0.20◦C
to 0.24◦C. Because land and ocean carbon
uptake rates are likely to be reduced with
climate warming (negative !L and !O), these
temperature biases have the potential to
further reinforce atmospheric CO2 biases in
the 21st century, leading to persistent and
divergent biases into the future for many

aspects of the climate system, unless compensated for by biases in concentration-carbon feedbacks ("L and
"O) or climate sensitivities (#). Atmospheric CO2 mole fraction projections out to 2100 under the RCP 8.5 sce-
nario for all ESMs are shown in Figure S4. Corresponding anthropogenic carbon inventories for the ocean
and land out to 2100 are shown in Figure S5.

3.4. Persistence of Biases Into the Future
To explore the persistence of atmospheric CO2 biases beyond the present, we examined the relationship
between 5 year mean contemporary and future atmospheric CO2 mole fractions from ESMs. Figure 4a
reveals a strong linear relationship between the predicted sizes of contemporary and future atmospheric
CO2 biases in 2060 with a coefficient of determination R2 = 0.70. This correlation declined to R2 = 0.54 in
2100 (Figure 4b) probably as a consequence of varying climate–carbon cycle feedbacks taking effect in dif-
ferent models. Because model biases in atmospheric CO2 mole fraction are persistent, biases at year 1850
affect biases at year 2010. To investigate the impact of different model baselines, we also examined the rela-
tionship between the 5 year mean contemporary and future anthropogenic atmospheric carbon inventory
in 2060 (Figure S6a) and 2100 (Figure S6b), taking into account uncertainties from measurements of nine-
teenth century CO2 and fossil emissions. This alternative metric slightly changed the ordering of models and
strengthened the coefficient of determination, further confirming the robustness of the bias persistence
relationship. To explore the value of a tuned model with no CO2 bias at the end of the historical period,
we compared the CCTM estimate described in section 2 with the set of CMIP5 model predictions and the

HOFFMAN ET AL. ©2013. The Authors. 150



Subset	of	Literature	on	Carbon	Cycle	in	
Earth	System	Models	

•  C4MIP	
–  Friedlingstein	et	al.,	J	Clim,	2006	

•  Carbon	Cycle	Model	EvaluaCon	
–  Randerson	et	al.,	Global	Change	Biology,	2009	
–  Cadule	et	al.,	GBC,	2010	
–  Anav	et	al.,	J	Clim,	2013	
–  Hoffmann	et	al.,	JGR-BGS,	2013	

•  Emissions	CompaCble	w/	Prescribed	CO2	ConcentraCons	
–  Jones	et	al.,	J	Clim,	2013	

•  Feedbacks	in	1%	CO2	ramping	CMIP5	experiments	
–  Arora	et	al.,	J	Clim,	2013	
–  Schwinger	et	al.,	J	Clim,	2014	

•  Emergent	constraints	
–  Cox	et	al.,	Nature,	2013	
–  Wang	et	al.,	GRL,	2014	
–  Wenzel	et	al.,	JGR-BGS,	2014	



Summary	
•  Large	scale	ocean	biogeochemical	features	are	determined	by	

handful	of	processes	
•  ‘Perfect’	ecosystem	model	doesn’t	exist,	many	simplificaCons	need	

to	be	made.	Improving	models	is	ongoing	research.	ScienCfic	
quesCons	and	observaConal	constraints	guide	this	process.	

•  Global	carbon	cycle	is	now	present	in	numerous	CMIP	class	models	
(ESMs).	ObservaCons	of	atmospheric	CO2,	on	mulCple	Cmescales,	
are	valuable	constraint	on	models.	

•  Land	&	ocean	uptake	of	anthropogenic	CO2,	parCcularly	sensiCvity	
to	climate	change	is	ongoing	research.	

•  Literature	on	the	global	carbon	cycle	in	ESMs	(e.g.	CMIP5)	is	
growing	rapidly.	

•  PracCcal	Notes	for	acCvaCng	the	carbon	cycle	in	CESM	are	available	
and	will	be	presented	in	Land/BGC	breakout.	


