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* Physical processes in an atmosphere GCM

* Distinguishing GCMs from other models (scales)
* Concept of ‘Parameterization’

* Physics representations (CESM)

— Clouds (different types), cloud fraction and
microphysics

— Radiation

— Boundary layers, surface fluxes and gravity waves
* Process interactions
 Model complexity, sensitivity and climate feedbacks
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Scales of Atmospherlc Processes
Determines the formulation of the model
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Hydrostatic Primitive Equations
Where do we put the physics?
Horizontal scales >> vertical scales

Vertical acceleration << gravity
dV/dt+ fk x V+ Vo =F, F, (horizontal momentum)
dT/dt — kTw/p = Q/c,, Fr (thermodynamic energy)
V-V +08w/0p =0, (mass continuity)
—> 0¢/0p+RT/p=0, (hydrostatic equilibrium)
dg/dt = S, Fav Fou Fai (water vapor mass continuity)
+ransport

Harmless looking terms F, ), and S, = “physics”
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What is a ‘Parameterization’?

Usually based on

— Basic physics (conservation laws of

thermodynamics)

— Empirical formulations from observations

In many cases: no explicit formulation
based on first principles is possible at
the level of detail desired. Why?

— Non-linearities & interactions at ‘sub-grid’

scale

— Often coupled with observational

uncertainty

— Insufficient information in the grid-scale

parameters

}K'X' BTN

Unresolved
‘sub-grid’

Vertical eddy transport of

/‘Diffusivity’
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Resolved
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Community Atmostfere Model

Representlng the key atmospheric processes in CAMS

i Cloud
i Macrophysics
i and Microphysics
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Clouds

Multiple Categories
e Stratiform (large-scale) clouds

— Responds to large-scale saturation fraction, RH (parameterized)
— Coupled to presence of condensate (microphysics, advection)

 Shallow convection clouds

— Symmetric turbulence in lower troposphere
— Non precipitating (mostly)
— Responds to surface forcing

* Deep convection clouds

— Asymmetric turbulence

— Penetrating convection (surface -> tropopause)

— Precipitating

— Responds to surface forcing and conditional instability
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Stratiform Clouds (macrophysics)
Sub-Grid Humidity and Clouds

v’ Liquid clouds form when RH = 100% (g=q.,,)

v’ But if there is variation in RH in space, some clouds will form
before mean RH = 100%

v RHcrit determines cloud fraction > 0; Value is lower over land
due to higher humidity variance

Fraction ;4
1.0 i _
i Assumed Cumulative
— ! Distribution function of
Clear i Humidity in a grid box
< Rheri i with sub-grid variation
(RH < Rhcrit) | Cloudy g
0 I (RH = 100%)
RHcrit Mean RH 50% 100%

Relative Humidity
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Shallow and Deep Convection

Exploiting conservation properties

Common propert‘ies
Parameterize consequences of vertical displacements of air parcels

Unsaturated: Parcels follow a dry adiabat (conserve dry static energy)

Saturated: Parcels follow a moist adiabat (conserve moist static energy)

Shallow (10s-100s m) Deep (100s m-10s km)
Parcels remain stable (buoyancy<0) Parcels become unstable (buoyancy>0)
Shallow cooling mainly Deep heating
Some latent heating and precipitation Latent heating and precipitation
Generally a source of water vapor Generally a sink of water vapor

Small cloud radius large entrainment Large cloud radius small entrainment
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Shallow and Deep Convection

Closure: How much and when?

Shallow
Local conditional instability CAM4

——————————————————— S— -i F"S'—
___________ _i _S_ —-_r-_i_—
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Convective inhibition and turbulent
kinetic energy (TKE) CAM5

Cumulus Top oev, 6
.,
Overshooting Penetrat A
Zone Entrainment ‘-,.
LNB A -
_." ", Entrainment
Y ¥
& M"I Yo 7, Detrainment
o B
i) : 1+1/2
5 CUMULUS -
KO Sz, w8 Ambiguous Layer (1)
Pun
—1I1-1/2

Deep

Convective Available Potential Energy
(CAPE) CAM4 and CAM5

CAPE>CAPE, ..., Timescale=1 hour
-b' | BU6§ANCY +b'

Shallow and deepE convection and stratiform cloud fractions combined for radiation
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Cloud Microphysics

 Condensed phase water processes
— Properties of condensed species (=liquid, ice)
* size distributions, shapes

— Distribution/transformation of condensed species

* Precipitation, phase conversion, sedimentation g,

* Important for other processes:
— Aerosol scavenging
— Radiation
* In CAM = ‘stratiform’ cloud microphysics
— Convective microphysics simplified
— Formulations currently being implemented into convection



Community Earth System Model Tutorial

CAMS Microphysics

g = mixing ratio

Morrison & Gettelman 2008

N = number concentration a N
»
Convective
Aerosol Detrainment Aerosol
(CCN (IN
Number) a N a N Number)
| Cloud Droplets Cloud Ice
(Prognostic) (Prognostic)
A A
Evap/Cond Dep/Sub
Autoconversion — q - — )
Water Vapor Autoconversion (Au)
Accreti g <
ceretion (Prognostic) Accretion (Ac)
Evaporation Sublimation Au ~ qc/Nc
Ac ™~ q.9.
q,N q, N
v ¢ Rain Snow ¢ v
Sedimentation (Diagnostic) (Diagnostic) Sedimentation
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Radiation
The Earth’s Energy Budget

Trenberth & Fasullo, 2008 Global Energy Flows W m2
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Goals of GCM Radiation Codes

* Accurately represent the input and output of
energy in the climate system and how it
moves around sl

— Solar Energy
— Thermal Emission

— Gases

— Condensed species: Clouds & Aerosols
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Solar Radiation Spectrum
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t Absorption Bands
o 20 co, H,0

250 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm) 1000nm = 1um

, Radiation at surface
From: ‘Sunlight’, Wikipedia
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k-distribution Band Model
4 H20 Mass Absorption Coefficient :c4(g) distribution: H20 Mass Absorption
10 TTTTT T T rrTrTTTTTTT TrrTrTT T 10 T T T T
102 4 I
6 g 100- 44‘ .
~ Sort ~ ] I
~ ——» ¢ 1072 | g
£ E .
o § 107+ -
é‘ Q ]
1076 - -
1078 . . 1 .
0.0 0.2 0.4 0.6 0.8 1.0
A (um) Average for AFGL 19ropicol Atmosphere
Average for AFGL Tropical Atmosphere
* Line-by-line calculations  k-distribution band model, sort
‘Very expensive/slow, accurate absorption coefficients by magnitude

- Cheaper/fast, less accurate
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Planetary Boundary Layer (PBL)

Regime dependent representations
(a)
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e Vital for near-surface environment L Stable boundary layer, possibly with nomturbulent cloud
.« g . (no cumulus, no decoupled Sc, stable surface layer)
(humidity, temperature, chemistry)
By e
* Exploit thermodynamic conservation &2 -
(liquid virtual potential temperature 6,,)
* Conserved for rapidly well mixed PBL
* Not conserved for stable PBL (05 S, s s e st e
e Critical determinant is the presence of
turbulence
. . 2B
* Richardson number Ri =
(u/0z)*

e <<1, flow becomes turbuient

I11. Single mixed layer, possibly cloud-topped
(no cumulus, no decoupled Sc, unstable surface layer)

By

* CAMA4: Gradient Ri # + non-local transport 2 G
(Holtslag and Boville, 1993) ™S
e CAMS5: TKE-based Moist turbulence (Park <

and Bretherton, 2009)
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Gravity Waves and Mountain Stresses
Sub-grid scale dynamical forcings

* Gravity Wave Drag
Tropopause perturbed - ~

— Determines flow effect of upward
propagating (sub-grid scale) gravity waves ——— ~— .

that break and dump momentum %%»

Mountain,~vaves

T

— Generated by surface orography (mountains)
and deep convection Upper Sow

— Important for closing off jet cores in the
upper troposphere (strat/mesosphere)

e Turbulent mountain stress

— Local near-surface stress on flow

Lower flow —TSeneratiog of turbulence by snear

Oeviated flow

— Roughness length < scales < grid-scale
— Impacts mid/high-latitude flow (CAMS5)

 More difficult to parameterize than
thermodynamic impacts (conservation?)
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Surface Exchange

e Surface fluxes (bulk formulations)

Stresses

Specific Heat

Latent heat
(evaporation)

Us — U
7o = —pr(uw') = —piui(ur/Va) = pr :
I'am
- 2 o Us — U
Ty = —p1(Vw’') = —pui(v1/Va) = p1 )
7a.7n
0, — 0,
H = picy(w't) = —picyu.b, = p1cp— ,
Iah
ds — q1
E= p(w'q) =—piru.g. = p1=
Iaw

* Resistances r_, based on
— Monin-Obhukov similarity theory
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Parameterization Interactions

Direct and Indirect Process Communication

Cloud Processes & Radiation
— Feedbacks
Boundary Layer / Cumulus & Dynamics

Precipitation & Scavenging
— Chemical (gas phase) constituents

— Aerosols (condensed phase constituents)
Microphysics and Aerosols

Physics and surface components (ice, land, ocean)
Resolved scales and unresolved scales
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Clouds in GCMs
State of the Art from CMIP3

Outgoing Long-wave Radiation
(Annual, 1990-1999)
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Clouds in GCMs

State of the Art from CMIP3

Total Cloud Fraction
(Annual, 1990-1999)
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Cloud Liquid Water Path (g/m?)
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Structural Clouds in GCMs

State of the Art from CMIP3

Liquid Water Path

(Annual, 1990-1999)
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Cloud Fraction Change (%)
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Future Clouds in GCMs

State of the Art from CMIP3 — response to climate change

Total Cloud Fraction Change
(Annual, SRES A1B: 2090-2099 minus 1990-1999)

60S  30S 0 30N 60N
latitude

Model Mean //

60S  30S 0 30N 60N
latitude
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Climate Sensitivity
What happens to clouds when we double CO2?

GFDL Model +4.2K NCAR Model +1.8K

) D /-' ERS -

(Soden)
Change in low cloud amount (%)

» Significant range in low-cloud sensitivity (low and high end of models)

« Cloud regimens are largely oceanic stratocumulus (difficult to model)

» Implied temperatures change is due to (higher/lower) solar radiation
reaching the ground because of clouds feedbacks.



" &\

Community Earth System Model Tutorial &8 a 4

Community Atmostfere Model

Representlng the key atmospheric processes in CAMS

i Cloud
i Macrophysics
i and Microphysics
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Community Atmosphére

MRadiation
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I SW LW
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2
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Representing the key atmosphenc processes in CAM6
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CLUBB: Cloud Layers Unified By Binormals  Golaz 2002b, J. Atmos. Sci.

Zhang Cloud/Transport Scheme
McFarlane Microphysics Scheme
(ZM) : :
1 1
L l

></”T_ Double-moment

moment

1 R
e [ ; / f o \ 298.5
MBL top i Deep Cu Single- : \C' LUBB 298

o~ 296.5 — &% /

o Unifies moist and dry turbulence (except deep convection) 2
295.5
o Unifies microphysics 205
o High order closures (1 third order, 9 second order) = S ey
®

Use two Gaussians to described the sub-grid multivariate PDF: P=P(w,q,,6,)
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Model physics: The future

1. How to operate in varying grid scale environments
* 2. Advanced representation of processes.

New and more complex processes Cloud super-parameterization

High Resolution, Regional grid refinement and scale-aware physics
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Summary
 GCMs physics=unresolved processes=parameterization

 Parameterization (CESM) = approximating reality
— Starts from and maintains physical constraints
— Tries to represent effects of smaller ‘sub-grid’ scales

* Fundamental constraints, mass & energy conservation

* Clouds are fiendishly hard: lots of scales, lots of phase
changes, lots of variability

* Clouds are coupled to radiation (also hard) = biggest
uncertainties (in future climate); largest dependencies

* CESM physics increasingly complex and comprehensive

e Future parameterizations aim to be process scale-aware
and model grid-scale independent
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, ‘ Questions?
- \: uestions:




