

Atmospheric Modeling I: Physics in the Community Atmosphere Model (CAM)

CESM Tutorial Rich Neale, NCAR (rneale@ucar.edu) August 8, 2016

NCAR is sponsored by the National Science Foundation

- Physical processes in an atmosphere GCM
- Distinguishing GCMs from other models (scales)
- Concept of 'Parameterization'
- Physics representations (CESM)
 - Clouds (different types), cloud fraction and microphysics
 - Radiation
 - Boundary layers, surface fluxes and gravity waves
- Process interactions
- Model complexity, sensitivity and climate feedbacks

Community Atmosphere Model (CAM)

Atmosphere Model Working Group (AMWG)

Scales of Atmospheric Processes Determines the formulation of the model

Hydrostatic Primitive Equations

Where do we put the physics?

 F_{τ}

Horizontal scales >> vertical scales

Vertical acceleration << gravity

 $d\overline{\mathbf{V}}/dt + fk \times \overline{\mathbf{V}} + \nabla \overline{\phi} = \mathbf{F}, \qquad \mathbf{F}_{\mathbf{V}}$

$$d\overline{T}/dt - \kappa \overline{T}\omega/p = Q/c_p,$$

$$abla \cdot \overline{\mathbf{V}} + \partial \overline{\omega} / \partial p = 0,$$

 $\quad \partial \overline{\phi} / \partial p + R \overline{T} / p = 0,$

(thermodynamic energy)

(horizontal momentum)

(mass continuity)

(hydrostatic equilibrium)

 $d\overline{q}/dt = S_q$. +transport F_{QV}, F_{QL}, F_{QI} (water vapor mass continuity)

Harmless looking terms F, Q, and $S_q \implies$ "physics"

What is a 'Parameterization'?

- Usually based on
 - Basic physics (conservation laws of thermodynamics)
 - Empirical formulations from observations
- In many cases: no explicit formulation based on first principles is possible at the level of detail desired. Why?
 - Non-linearities & interactions at 'sub-grid' scale
 - Often coupled with observational uncertainty
 - Insufficient information in the grid-scale parameters

Community Earth System Model Tutorial

Community Atmosphere Model

Clouds

Clouds Multiple Categories

- Stratiform (large-scale) clouds
 - Responds to large-scale saturation fraction, RH (parameterized)
 - Coupled to presence of condensate (microphysics, advection)

• Shallow convection clouds

- Symmetric turbulence in lower troposphere
- Non precipitating (mostly)
- Responds to surface forcing

• Deep convection clouds

- Asymmetric turbulence
- Penetrating convection (surface -> tropopause)
- Precipitating
- Responds to surface forcing and conditional instability

- ✓ Liquid clouds form when RH = 100% ($q=q_{sat}$)
- ✓ But if there is variation in RH in space, some clouds will form before *mean* RH = 100%
- *RHcrit* determines cloud fraction > 0; Value is lower over land due to higher humidity variance

Shallow and Deep Convection

Exploiting conservation properties

Common properties

Parameterize consequences of vertical displacements of air parcels <u>Unsaturated</u>: Parcels follow a dry adiabat (conserve dry static energy) <u>Saturated</u>: Parcels follow a moist adiabat (conserve moist static energy)

Shallow (10s-100s m)

Parcels remain stable (buoyancy<0) Shallow cooling mainly Some latent heating and precipitation Generally a source of water vapor Small cloud radius large entrainment

Deep (100s m-10s km)

Parcels become unstable (buoyancy>0) Deep heating Latent heating and precipitation Generally a sink of water vapor

Large cloud radius small entrainment

Shallow and Deep Convection

Closure: How much and when?

Shallow

Local conditional instability CAM4

Convective inhibition and turbulent kinetic energy (TKE) CAM5

<u>Deep</u>

Convective Available Potential Energy (CAPE) CAM4 and CAM5

CAPE>CAPE_{trigger}

Timescale=1 hour

Shallow and deep convection and stratiform cloud fractions combined for radiation

Cloud Microphysics

Condensed phase water processes

- Properties of condensed species (=liquid, ice)
 - size distributions, shapes
- Distribution/transformation of condensed species
 - Precipitation, phase conversion, sedimentation
- Important for other processes:
 - Aerosol scavenging
 - Radiation

In CAM = 'stratiform' cloud microphysics

- Convective microphysics simplified
- Formulations currently being implemented into convection

Radiation

The Earth's Energy Budget

Goals of GCM Radiation Codes

- Accurately represent the input and output of energy in the climate system and how it moves around
 - Solar Energy
 - Thermal Emission
 - Gases

- Condensed species: Clouds & Aerosols

From: 'Sunlight', Wikipedia

IR absorption

k-distribution Band Models

Line-by-line calculations
Very expensive/slow, accurate

• k-distribution band model, sort absorption coefficients by magnitude

Cheaper/fast, less accurate

Planetary Boundary Layer (PBL) Regime dependent representations

- Vital for near-surface environment (humidity, temperature, chemistry)
- Exploit thermodynamic conservation (liquid virtual potential temperature θ_{vl})
- Conserved for rapidly well mixed PBL
- Not conserved for stable PBL
- Critical determinant is the presence of turbulence
- Richardson number

$$=\frac{g\beta}{(\partial u/\partial z)^2},$$

- <<1, flow becomes turbuient
- <u>CAM4</u>: Gradient Ri # + non-local transport (Holtslag and Boville, 1993)

Ri

 <u>CAM5</u>: TKE-based Moist turbulence (Park and Bretherton, 2009)

(a)

I. Stable boundary layer, possibly with non-turbulent cloud (no cumulus, no decoupled Sc, stable surface layer)

(C) III. Single mixed layer, possibly cloud-topped (no cumulus, no decoupled Sc, unstable surface layer) θ_{v1 /}

Community Earth System Model Tutorial

Gravity Waves and Mountain Stresses

Sub-grid scale dynamical forcings

Gravity Wave Drag

- Determines flow effect of upward propagating (sub-grid scale) gravity waves that break and dump momentum
- Generated by surface orography (mountains) and deep convection
- Important for closing off jet cores in the upper troposphere (strat/mesosphere)

Turbulent mountain stress

- Local near-surface stress on flow
- Roughness length < scales < grid-scale
- Impacts mid/high-latitude flow (CAM5)
- More difficult to parameterize than thermodynamic impacts (conservation?)

Surface Exchange

Surface fluxes (bulk formulations)

Stresses

$$\tau_{x} = -\rho_{1}\overline{(u'w')} = -\rho_{1}u_{*}^{2}(u_{1}/V_{a}) = \rho_{1}\frac{u_{s}-u_{1}}{r_{am}}$$

$$\tau_{y} = -\rho_{1}\overline{(v'w')} = -\rho_{1}u_{*}^{2}(v_{1}/V_{a}) = \rho_{1}\frac{v_{s}-v_{1}}{r_{am}}$$
Specific Heat

$$H = -\rho_{1}c_{p}\overline{(w'\theta')} = -\rho_{1}c_{p}u_{*}\theta_{*} = \rho_{1}c_{p}\frac{\theta_{s}-\theta_{1}}{r_{ah}}$$
Latent heat
(evaporation)

$$E = -\rho_{1}\overline{(w'q')} = -\rho_{1}u_{*}q_{*} = \rho_{1}\frac{q_{s}-q_{1}}{r_{aw}}$$

- Resistances *r*_{ax} based on
 - Monin-Obhukov similarity theory

Parameterization Interactions Direct and Indirect Process Communication

- Cloud Processes & Radiation
 - Feedbacks
- Boundary Layer / Cumulus & Dynamics
- Precipitation & Scavenging
 - Chemical (gas phase) constituents
 - Aerosols (condensed phase constituents)
- Microphysics and Aerosols
- Physics and surface components (ice, land, ocean)
- Resolved scales and unresolved scales

latitude

Clouds in GCMs State of the Art from CMIP3

Outgoing Long-wave Radiation (Annual, 1990-1999) TOA Outgoing Long Wave Radiation (W/m 2) 300 300 270 270 240 240 210 210 180 180 Model Mean ERBE 150 150 std-**CMIP3** Models std+ (~20 models) 120 120 90S 60S 30S 30N 60N 90N 90S 60S 30S 30N 60N 90N 0

latitude

Clouds in GCMs State of the Art from CMIP3

Total Cloud Fraction (Annual, 1990-1999)

Structural Clouds in GCMs State of the Art from CMIP3

Liquid Water Path (Annual, 1990-1999)

Future Clouds in GCMs State of the Art from CMIP3 – response to climate change

Climate Sensitivity What happens to clouds when we double CO₂?

Change in low cloud amount (%)

- Significant range in **low-cloud sensitivity** (low and high end of models)
- Cloud regimens are largely **oceanic stratocumulus** (difficult to model)
- Implied temperatures change is due to (higher/lower) solar radiation reaching the ground because of clouds feedbacks.

Community Earth System Model Tutorial

Community Atmosphere Model

CLUBB: Cloud Layers Unified By Binormals

Golaz 2002b, J. Atmos. Sci.

• Use two Gaussians to described the sub-grid multivariate PDF: P=P(w,q_t, θ_L)

Model physics: The future

- 1. How to operate in varying grid scale environments
- 2. Advanced representation of processes.

High Resolution, Regional grid refinement and scale-aware physics

Community Earth System Model Tutorial

Summary

- GCMs physics=unresolved processes=parameterization
- Parameterization (CESM) = approximating reality
 - Starts from and maintains physical constraints
 - Tries to represent effects of smaller 'sub-grid' scales
- Fundamental constraints, mass & energy conservation
- Clouds are fiendishly hard: lots of scales, lots of phase changes, lots of variability
- **Clouds** are **coupled to radiation** (also hard) = biggest uncertainties (in future climate); largest dependencies
- CESM physics increasingly **complex** and **comprehensive**
- Future parameterizations aim to be process scale-aware and model grid-scale independent

