

Hour 10

Jan 01

Nan Rosenbloom, Julio Bacmeister, Susan Bates, Cecile Hannay, Kevin Reed, Rich Neale, Justin Small, Gary Strand, Colin Zarzycki

National Center for Atmospheric Research, Boulder, CO

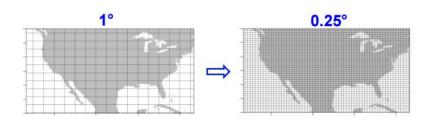
Outline

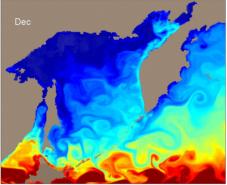
- □ Motivation for using high resolution CESM
- □ What do we mean by "high resolution"
- □ Dynamical core: FV vs SE
- Benefits* vs costs
- □ Applications
- \Box High resolution \rightarrow High frequency output

*CESM2 High resolution has not been released \rightarrow CESM2.1

Outline

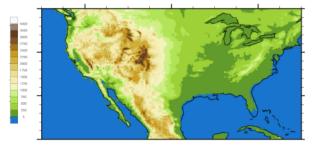
- □ Motivation for using high resolution CESM
- □ What do we mean by "high resolution"
- Dynamical core: FV vs SE
- Scientific benefits* vs technical costs
- □ Applications
- \Box High resolution \rightarrow High frequency output

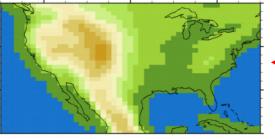

*CESM2 High resolution has not been released \rightarrow CESM2.1


	Tutorial	High R	esoln
Atmosphere version	CAM6		CAM-SE
Atmosphere Resolution	~100km		~28km
Ocean Resolution	1°		1º/0.1º
Throughput (24 wallclock)	20+ yrs/day		~1-2 yrs/day

All the examples in this presentation use CESM1/CAM5/CLM4.0/CICE

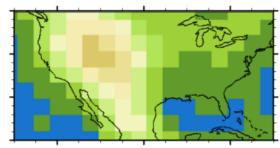
Increasing model resolution may allow us to:


- □ **Reduce** the need to **parameterize processes**
- Better resolve processes: convection, precipitation, ocean eddies and boundary currents, improve the eastern boundary SST bias, mescoscale convective systems (MCSs)
- Detect highly localized storms: tropical cyclones, hurricanes, mid-latitude storms, tornadoes

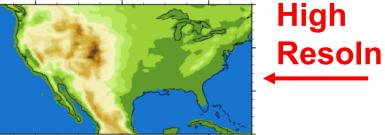


What do we mean by high resolution

Observation

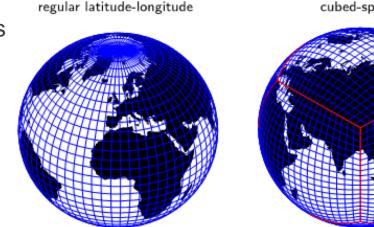


CAM at 1 degree (standard resolution)



Tutorial

CAM at T31


CAM at 0.25 degree (high resolution)

Dycore: Finite Volume (FV) vs CAM-SE

Benefits:

- Unstructured grid: ~uniform cells
- No convergent pole \rightarrow less filtering \rightarrow faster (primary reason we use SE instead of FV0.25)
- Able to do regional refinement

cubed-sphere

Cons:

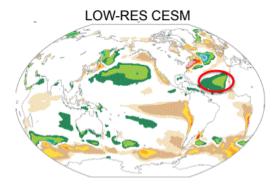
- Different biases
- Vector output format from CAM-SE is hard to visualize

High resolution atmosphere

Resolution + dynamical core

Atmosphere grid Atm/Land Ocean/Ice Resoln Spectral low resolution T31 gx3v7 3.75° 3° Finite volume low resolution f45 gx3v7 **4**° 3° Tutorial— Finite volume low resolution f19_gx1v6 **2**° 1° Finite LENS -----Finite volume moderate resolution f09 gx1v6 1° 1° Volume Finite volume high resolution (hdeg) f05 gx1v6 0.5° 10 Finite volume high resolution f02 gx1v6 0.25° 10 **1**° Spectral element moderate resolution ne30 gx1v6 **1**° **CAM-SE** ne120 gx1v6 High Res Atm-Spectral element high resolution 0.25° 1° High Res Spectral element high resolution ne120 t12 0.25° 0.1° Atm+Ocn

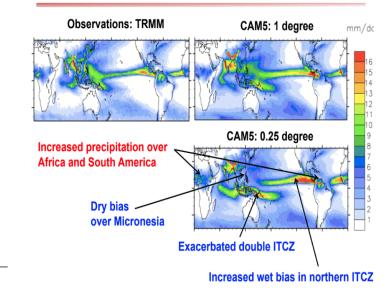
Some things improve .. (CAM5)


Atmosphere:

- Tropical cyclones
- Extreme precipitation
- Eastern boundary SST
 - Improved coastal jets in the atmosphere

Ocean:

- Eddies
- Western boundary currents and SST
- Small scale air-sea interactions; atmosphere boundary layer responding to SST
- ENSO ... ? Looks good in ASD run but data and observations are short


Some biases may persist (CAM5)

SST bias, CESM with 1deg atmosphere, 1deg ocean. Annual mean

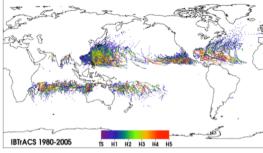
- Deep ocean warming
- Double ITCZ remains + strengthens
- Persistent cool Atlantic

Precipitation, JJA

HIGH-RES CESM With 0.25deg atmosphere, 0.1deg ocean. Annual mean TC generation region – too cool

Courtesy of Cecile Hannay

Weighing Costs vs Benefits

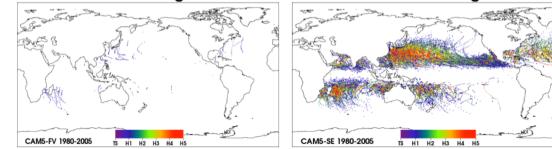

Pros:

- Better resolve processes: convection, precipitation, ocean eddies and boundary currents, eastern boundary SST improved
- Can detect highly localized storms like tropical cyclones and mid-latitude storms

Cons:

- Costs: Storage + production
- High resoln **spatial** + **temporal** output
- TC detection requires HF output
- Cyclone tracking → 3-6 hrly (WMO standard is 6 hrly)
- Bias reduction can be mixed
- Post-processing+data management
- Ensembles vs high resolution

Observations: IBTrACS



CAM5: 1 degree

• Tropical cyclone tracks identified by GFDL tracking algorithm

CAM5 at 0.25 degree has some skills to simulate tropical cyclones

CAM5: 0.25 degree

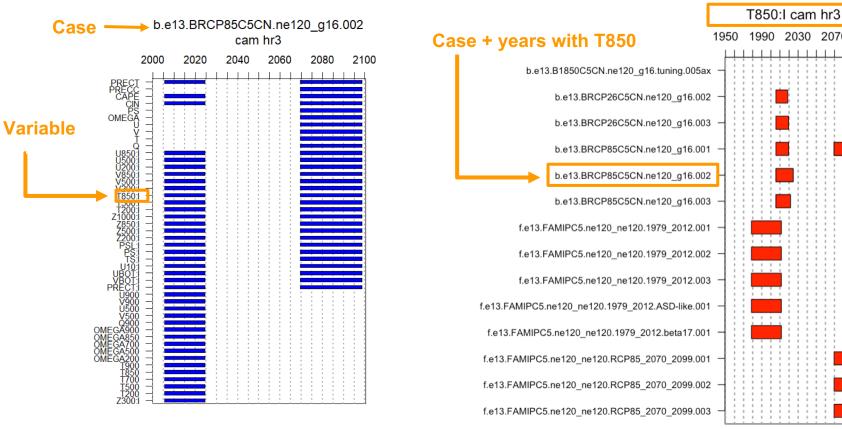
Courtesy: Kevin Reed [See also: Wehner et al. 2014, JAMES]

Costs: Data volume - Atm

Frequency	Field	Number of Variables	Gigabytes per year
Daily	Single level	10	11
6 hourly	Single	24	68
6 hourly full field	Full field	9	1300
3 hourly	Single level	25	230
3 hourly full field	Full field	5	1400
1 hourly	Single level	1	27
	Total	74	2900 Gbytes/yr

Ratio of output volume relative to default model configuration

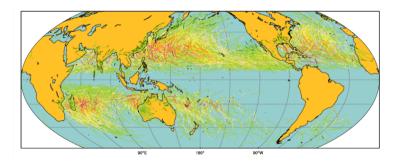
	Resolution	Standard output	High frequency output
Ratio of data volume to	1 deg atm + 1 deg ocn	1	2.7
standard	0.25 deg atm + 1 deg ocn	8	36
resolution	0.25 deg atm + 0.1 deg ocn	11	73


Resolution	Total (Tb)	Total model yrs	Tb/model year
1 deg atm + 1 deg ocn	510	14000	0.04
0.25 deg atm + 1 deg ocn	50	156	0.32
0.25 deg atm + 0.1 deg ocn	140	55	2.55

Costs: Data volume - Ocean

Example with daily output

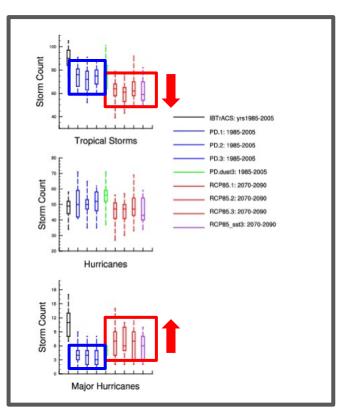
		# vars	1 degree	10th degree
			30 levels	62 levels
			320x384	2400x3600
Daily	Single level	29	5	340
Daily	Full field	4	33	4700
	Total	33	38 Gbytes/yr	5040 Gbytes/ yr


Data management

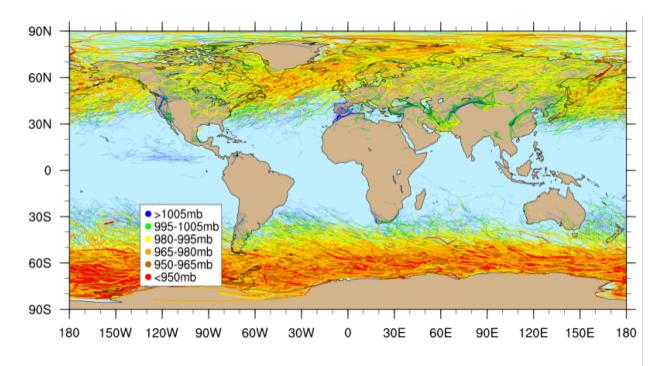
CESM Tutorial, NCAR, Boulder, CO August 6-10, 2018

2030 2070

Applications: Tropical Cyclones

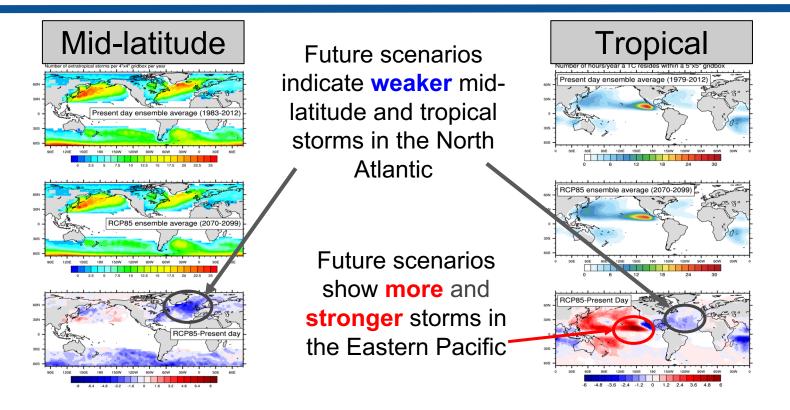


Motivation:

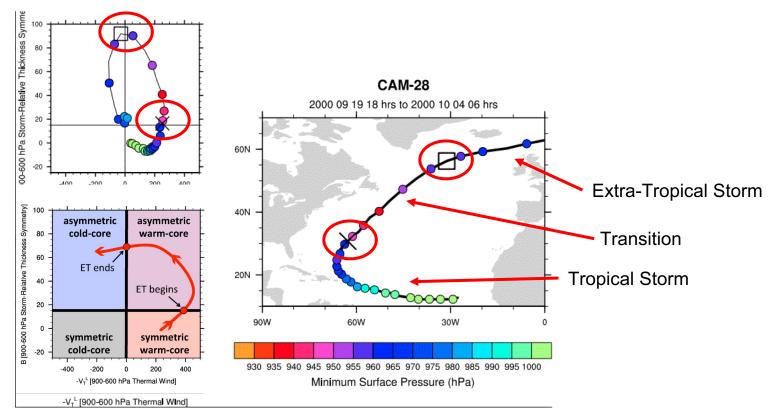

- Understanding how TC may change in a warming world is important to science and society.
- □ Model results indicate that 0.25° CAM5-SE has skill in simulating TCs.

Methods + Results:

- GFDL cyclone tracker
- Reduction in overall TC activity
- □ Increase in frequency of very intense TCs



Applications: Extratropical storms

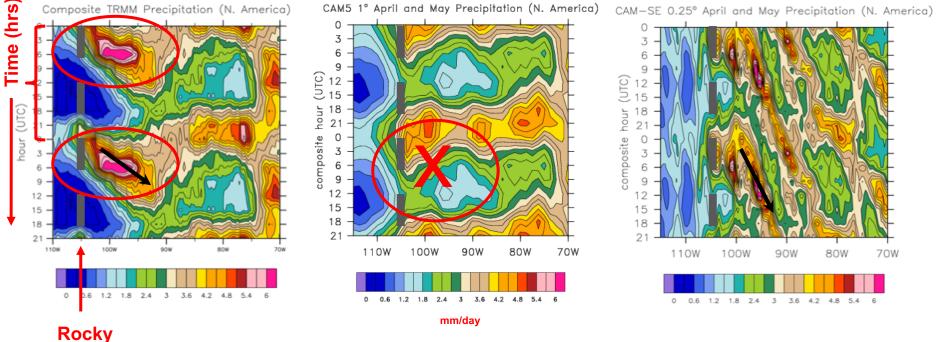


We also look at changes in mid-latitude storms using TempestExtremes (Ullrich and Zarzycki, 2016)

Applications: TCs + ETCs

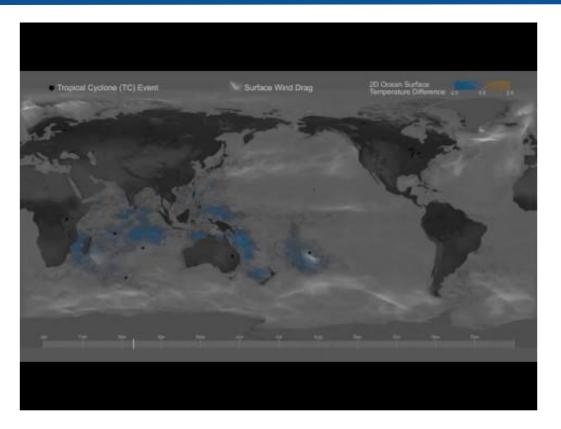
Detecting the extratropical transition of tropical cyclones

Courtesy of Colin Zarzycki (Zarzycki et al. (2017) JAMES)


Eastward Propagation of orographic precip

Storms form in the lee of the Rockies and move East across the Great Plains

Observed


CAM5 1 degree

CAM5 0.25 degree

Mountains

Animation

Animation courtesy of Ryan Sriver, UIU-C, NCSA

Summary

- □ High resolution \rightarrow 0.25° atm/land + 1° (or 0.1°) ocean/ice
- \Box Dynamical core \rightarrow CAM-SE
- Better resolve processes that we've previously had to parameterize.
- □ Better resolve **topographic** features: dynamics and precipitation
- Improvement to boundary currents in ocean, and coastal jets in the atmosphere
- □ May improve some biases, and create new ones
- □ High production + storage costs
- □ High **spatial** resolution + high freq **temporal** output = **BIG DATA**
- High resolution vs ensembles

Questions?

