

Atmospheric Modeling, Chemistry and Aerosols

Presented by Simone Tilmes ACOM

Chemistry-Climate WG Co-Chairs: Louisa Emmons, Xiaohong Liu,

WACCM WG Co-Chairs: Rolando Garcia, Lorenzo PolvaniSoftware Engineers: Francis VittCAMChem Liaison: Simone TilmesWACCM Liaison: Mike Mills

Community Earth System Model

Importance of Chemistry and Aerosols for Climate

Chemistry and aerosols interact with the climate system, -> need to be well describe in climate models

CESM Tutorial 2018, Chemistry / Aerosols

CO,

CH₄

0,

Black Carbon

Organic Carbon

Mineral Dust

Aerosol-Cloud

Solar Irradiance

1.5

Aircraft Land Use

1.0

H₂O(Strat.)

CO

NO.

NH₃

SO₂

NMVOC

Poor air quality is a mayor health issue

Health Burden of Global Air Pollution is Enormous

Community Earth System Model

Community Earth System Model

NESI

Importance of the Stratosphere, and Exchange Processes

 Exchange of chemistry and aerosol due to stratospheric/troposperic transport

- Impact of halogen loading on stratospheric ozone (ozone hole) and impact on climate (importance of very short-lived species)
- -> local changes of short

time scales are important

Chemistry-Climate Interactions in CESM2

CAM6 vs CAM-chem

Same atmosphere, physics, resolution Different chemistry and aerosols -> emissions and coupling

- CAM6: Aerosols are calculated, using simple chemistry ("fixed" oxidants) (prescribe: N₂, O₂, H₂O, O₃, OH, NO₃, HO₂; chemically active: H₂O₂, H₂SO₄, SO₂, DMS, SOAG)
 - Limited interactions between Chemistry and Climate
 - -> prescribed fields have to be derived using chemistryclimate simulations
 - Prescribed ozone is used for radiative calculations
 - Prescribed oxidants is used for aerosol formation
 - Prescribed methane oxidation rates
 - Prescribed stratospheric aerosols
 - Prescribed nitrogen deposition
 - Simplified secondary organic aerosol description

Chemistry-Climate Interactions in CESM2

Modeling Chemistry-Climate Interactions in CESM2

Surface emissions and concentrations

- emissions: anthropogenic, biogenic, biomass burning, ocean, soil, volcanoes
- surface concentrations (greenhouse gases)

Chemical mechanism: important for chemistry and aerosol production

Dry Deposition: uptake of chemical constituents by plants and soil (CLM), depending on land type, roughness of surface, based on resistance approach

Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation, both large-scale and convective).

Community Earth System Model

Example: NO_x emissions

Lamarque et al., 2010

Anthropogenic + biomass burning + ships: kg(N)/year

Community Earth System Model S

Modeling Chemistry-Climate Interactions in CESM2

• Greenhouse gases are prescribed as monthly fields of CO_2 , $CH_{4,}$ O_3 , N_2O , CFCs) through lower boundary conditions. All CFCs can be combined to effective CFC emissions.

Lower Boundary Conditions, RCP6.0

Modeling Chemistry-Climate Interactions in CESM2

Surface emissions and concentrations

- emissions: anthropogenic, biogenic, biomass burning, ocean, soil, volcanoes
- surface concentrations (greenhouse gases)

Chemical mechanism: important for chemistry and aerosol production

- WACCM and CAMchem: 483 reactions and 231 solution species
- CAM6: 6 chemical reactions and 25 solution species (much simpler)

Dry Deposition: uptake of chemical constituents by plants and soil (CLM), depending on land type, roughness of surface, based on resistance approach
 Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation)

Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation, both large-scale and convective).

Tropospheric Chemistry and Aerosols

Photo-chemistry Gas-phase chemistry Heterogeneous and Aqueous phase chemistry, Aerosol formation

Available Chemical Mechanisms

Mechanism (pre-processor code)	Model: Chemistry Description	#Species	#Reactions
TSMLT1 (pp_waccm_tsmlt_mam4)	WACCM: Troposphere, stratosphere, mesosphere, and lower thermosphere	231 solution, 2 invariant	583 (433 kinetic, 150 photolysis)
TS1 (pp_trop_strat_mam4_vbs)	CAM-chem: Troposphere and stratosphere	221 solution, 3 invariant	528 (405 kinetic, 123 photolysis)
MA (pp_waccm_ma_mam4)	WACCM: Middle atmosphere (stratosphere, mesosphere, and lower thermosphere)	98 solution, 2 invariant	298 (207 kinetic, 91 photolysis)
MAD (pp_waccm_mad_mam4)	WACCM: Middle atmosphere plus D-region ion chemistry	135 solution, 2 invariant	593 (489 kinetic, 104 photolysis)
SC (pp_waccm_sc_mam4)	WACCM: Specified chemistry	29 solution, 8 invariant	12 (11 kinetic, 1 photolysis)
CAM	CAM: Aerosol chemistry	25 solution, 7 invariant	7 (6 kinetic, 1 photolysis)

Modal Aerosol Model (MAM)

Secondary Organic Aerosol Description in WACCM and CAM-chem

Modified after C. Heald, MIT Cambridge

Simplified Chemistry (CAM6):

- SOAG (oxygenated VOCs) derived from fixed mass yields
- no interactions with land

Comprehensive Chemistry:

- SOAG formation derived from
 VOCs using Volatility Bin Set
 (VBS) description
- 5 volatility bins
- Interactive with land emissions
- -> more physical approach

woodjied djier C. Heald, with Cambridge

Modeling Chemistry-Climate Interactions in CESM2

Surface emissions and concentrations

- emissions: anthropogenic, biogenic, biomass burning, ocean, soil, volcanoes
- surface concentrations (greenhouse gases)

Chemical mechanism: important for chemistry and aerosol production

- WACCM and CAMchem: 483 reactions and 231 solution species
- CAM6: 6 chemical reactions and 25 solution species (much simpler)
- **Dry Deposition:** uptake of chemical constituents by plants and soil (CLM), depending on land type, roughness of surface, based on resistance approach

Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation, both large-scale and convective).

Dry Deposition Velocity

Deposition flux:

Modeling Chemistry-Climate Interactions in CESM2

Surface concentrations and emissions

Chemical mechanism: important for chemistry and aerosol production

Dry Deposition: uptake of chemical constituents by plants and soil (CLM), depending on land type, roughness of surface, based on resistance approach

Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation, both large-scale and convective).

• Removal is modeled as a simple first-order loss process

 $X_{iscav} = X_i \times F \times (1 - \exp(-\lambda \Delta t))$

- X_{iscav} is the species mass (in kg) of Xi scavenged in time
- F is the fraction of the grid box from which tracer is being removed, and λ is the loss rate.

Compsets define the specifics of emissions, chemistry, and deposition!

Interactive Modeling with Chemistry

MACCITY Emissions (2005) 2-7km O_3 (ppb)

January

WACCM forecast: https://www.acom.ucar.edu/waccm/forecast/

NSF

AMWG Diagnostic Package includes WACCM and Chemistry diagnostics

Chemistry Set Description

Community Earth System Model

<u>Tables / Chemistry</u> of ANN global budgets
 Vertical Contour Plots <u>contour plots</u> of DJF,
 MAM, JJA, SON and ANN zonal means
 Ozone Climatology <u>Comparisons</u> Profiles,
 Seasonal Cycle and Taylor Diagram
 Column O3 and CO <u>lon/lat</u> Comparisons to

4 Column O3 and CO lon/lat Comparisons to satellite data

5 Vertical Profile Profiles Comparisons to NOAA Aircraft observations

6 Vertical Profile Profiles Comparisons to

Emmons Aircraft climatology

7 Surface observation <u>Scatter Plot</u> Comparisons to IMROVE

WACCM Set Description

- 1 Tables of regional min, max, means
- 2 Seasonal cycle line plots of SP, SM, EQ, NM,
- NP zonal means (vertical log scale)
- 3 Vertical seasonal cycle plots of SP, SM, EQ,
- NM, NP zonal means (vertical log scale)
- 4 Vertical contour plots of JUN, DEC, DJF,
- MAM, JJA, SON and ANN zonal means

(vertical log scale)

5 Horizontal <u>contour plots</u> of JUL, AUG, JJA, DJF and ANN zonal means

Tropospheric Column Ozone Difference to OMI/MLS CCMI Comparison (Revell et al., 2018)

User Support: CAM-Chem Wiki page

https://wiki.ucar.edu/display/camchem/Home

Advanced Changes	 Data Assimilation Online Air-Sea Interface for Soluble Species Updating Gas-phase Chemistry Tagging CO and simple tracers Clone a Case Create a Branch Biogenic Emission Options (MEGAN)
Model Component Descriptions	 Wet Deposition Dry Deposition Gas-phase Chemistry Emission Inventories Aerosols
Processing	 Pre-processing Using CAM-chem output Automated CESM diagnostic package GitHub Tutorial
User Community	 Current Users/Projects Chemistry-Climate Working Group Publications UCAR Publications
CESM	Tutorial 2018. Chemistry / Aerosols

WACCM and CAM-Chem Customer Support

CGD Forum: <u>http://bb.cgd.ucar.edu</u>/

Mike Mills WACCM Liaison mmills@ucar.edu (303) 497-1425

Simone Tilmes CAM-Chem Liaison tilmes@ucar.edu (303) 497-1445

Extras

NSF

New Secondary Organic Aerosol approach in CESM2 CAM-chem and WACCM

Simplistic ways of treating the complex SOA lifecycle

More physical approach Direct coupling to biogenic emissions changes from MEGAN -> couples SOA formation to

land use and climate change

-> VBS (volatility bin scheme) only works in full chemistry version at this point

Community Earth System Model

Values very close to observational estimates!

NSF