Quantifying marine ectotherms vulnerability to climate warming

Precious Mongwe^{1,2*}, Matthew Long², Takamitsu Ito³ & Curtis Deutsch⁴

¹Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA

²Climate and Ocean Dynamics, Council for Scientific and Industrial Research, Cape Town, SA

³School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

⁴School of Oceanography, University of Washington, Seattle, Washington, USA

Dissolved oxygen heterogeneity plays a key role in setting marine habitat boundaries

Long et al., 2019 Deutsch et al., 2020

Ocean Deoxygenation

Long et al., 2019

Metabolic rates increase with temperature for Ectotherms

Water Temperature

Metabolic theory

- $\alpha_s = rate \ of \ gass \ transfer \ between \ water \ and \ organism$
- $\alpha_D = taxon specific basal metabolic rate$
- $A_c = \frac{\alpha_s}{\alpha_p}$ (ecologoical hypoxic tolerance)
- $k_B = Boltzman \ constant$
- $E_o = E_d E_s$ (Activation energy)
- T = temperature

Organism metabolic constraints $\Phi' > 1 = habitable$ pO₂ $\Phi' < 1$ = uninhabitable

Temperature

Species tolerance

curve $[pO_2 \text{ at } \Phi_{crit}]$

Fry,1947; Portner and knust., 2007; Deutsch et al.,2015; 2020; Penn et al., 2018; Howard et al., 2020

Defining Organism's Thermal Safety Margin (TSM) in the context of climate change [0 – 1000 m]

Defining Organism's Thermal Safety Margin (TSM) in the context of climate change [0 – 1000 m]

Organismic anthropogenic TSM are set by both present climate state and net long-term changes in pO_2 and temp [0 – 1000 m, CESM1-LE]

Marine ectotherms vulnerability to extirpation increase the largest in the tropical regions and North Pacific [0 – 1000 m, CESM1-LE]

Summary

- Warming and deoxygenation projected over the next several decades will yield a reduction in thermal safety margins for some organisms, curtailing the volume of viable habitat for some sensitive ecosystems.
- Our results demonstrate that in many regions, organisms will be pushed closer or beyond their physiological limits leaving the ecosystem more vulnerable to extreme events.
- We find that the fraction of habitable time for an average locally adapted ecotype decreases by over 50% in the tropical oxygen minimum zones and North Pacific basin by the end of the century.
- Long-term oxygen gain in the Arctic Ocean helps more organisms meet their metabolic demand in the future, while oxygen abundance prohibits habitat loss in the Southern Ocean.

Thank You

Habitat loss is reduced by almost 50% in the **1.5°C warming** vs. **RCP85** scenario

[0 – 1000 m, CESM1-LE]

Organism's physiological constraints

