
Hi everyone! I’m Brian Dobbins, and I’m a software engineer here at NCAR. I hope
you’ve all had a great week learning all about CESM. I’m not going to teach you
anything new about CESM itself, but rather show you how you can continue
learning to use it on your very own laptop via a project we call “CESM-Lab”.
Feel free to follow along as we go, pausing this video as needed to do the
required steps. This will require downloading some software called Docker
onto your laptop or desktop, and downloading a few gigabytes of data to get
started, so it could take a while depending on your internet speeds. Finally,
everything I’m going to cover is pretty new technology for us – and it’s still in
development, so we’d love feedback, so we can improve this moving forward
for the community.

Here’s a quick overview of what we’ll cover today – starting with a brief look at what
CESM-Lab actually is. After that, I’ll discuss how to download Docker, and how to get
the model software itself. Then I’ll give brief examples of how to launch it, on both
Windows and Mac / Linux systems. Then we’ll spend a few minutes looking at a very
basic Jupyter-based tutorial we have included for now, and talk a little bit about how
we expect to expand on this in the future. And, since some of you might be ‘old
school’ like myself, I’ll discuss how to use the terminal included, vs the Jupyter
interface. And finally, we’ll close out with a quick discussion of some limitations, since
obviously the current target here is personal systems, which have considerably less
power than supercomputers like Cheyenne! Last but not least, I’ll briefly cover some
future plans.

So, what is CESM-Lab? Simply enough, it’s just a preconfigured environment with
both CESM and Jupyter Lab. It’s portable, and ready to run pretty much
anywhere. And containers are the key technology here – they’re a technology
that lets you package up a whole environment for an application like CESM, and
provide it in this simple, portable form. For us, this isn’t just the model source
code, but also all the libraries, compilers, tools and more that go into having a
usable environment for modeling. Given the rapidly growing interest in Jupyter
notebooks, and the growth of things like the Pangeo project and NCAR’s Earth
System Data Science (ESDS) initiative, we can also include a full stack of Python
packages needed for visualization and analysis.

Best of all, this means anything we provide in this environment that works for one
person, will work for another! No struggling to add new libraries or
dependencies – it just works. You can focus on shareable science, instead of
wrestling with conda environments, or installing tools. This also allows for the
development of common materials for training, like we’ll see and use later on.
If you’re not familiar with Jupyter, don’t worry – you can use a traditional
‘terminal’ environment in multiple ways, too, and I’ll cover that a little later on.

3

(Earth image from: Andrew Colvin -
https://commons.wikimedia.org/wiki/File:Earth_(blank).png)

3

Docker is a common ‘container’ application – it’s free to use, easy to install (you’ll
need admin privileges though!), and user-friendly. If you go to that link, it’ll
show you what it thinks is right for your system – in my case, I’m on a Mac, so it
shows me these options. If you’re following this presentation at your own
pace, I’d recommend pausing this presentation now, installing the Docker
software, and then resuming.

4

OK, great – if you have Docker, now we can download the CESM-Lab image. Open
a terminal or command prompt and run this ‘docker pull’ command shown
above - this will download all the CESM software, This image is about 4
gigabytes in size, so once again, if you’re following along to this video at your
own pace, I recommend pausing it until it’s complete.

5

Now let’s talk about running the container. Both Mac and Windows offer a GUI for
Docker – you can use that, or the command line. Ultimately, both work the
same. I’ve seen more people using the GUI on Windows, so these screenshots
are from Windows, and the command-line ones will be from a Mac system, but
it’s just the same two options you need to set.

So once you launch the GUI ‘dashboard’ (often at the top of your Mac screen, or in
the Windows start menu), you should see the container listed among the
images we have. From here, we’re just going to go click on the ‘run’ button.

6

Now, to be fully functional, we need to provide two settings to Docker – the first is
a ‘port’, circled here in purple. This just lets us communicate with the
containerized Jupyter environment via a browser. Generally we just use 8888,
and only need to change it if another piece of software is already listening to
that port.

The second option we’re providing is a ‘mount point’, circled here in red. What this
does is make a directory of our choosing on our system visible to the
containerized environment, letting us ensure our all work –model cases, output
data, scripts, etc!- are all saved when you exit the container. (By default,
containers don’t update their image – this is great for making sure you have a
standard, working copy, but it does mean we need to map in a location.)

Once we set these values, click run, and you’re off and running!

7

If you’ve followed the previous two slides, this is more of the same, only via the
command-line – this approach works on Mac, Windows and Linux. If you’re
using CESM, you’re probably using a terminal at some point, so I highly
recommend trying things this way, even if you’re more at ease with the GUI
mode. But if you’ve already launched it using the GUI, skip this step for now,
and just try it next time!

Just the same as the GUI method, we need to tell Docker two important things – a
directory to ‘map’ into the container, and a ‘port’ to connect to the Jupyter
server we’re running. For the directory, specified with the ‘-v’ option, as seen in
red here, we can specify whatever we want – if it doesn’t exist, it’ll be created.
In the example here, I’m choosing to use a directory called ‘cesmwork’ in my
home directory. This gets mapped to ‘/home/user’ in the container. For ports,
using the ‘-p’ option, seen in purple here, I’m using the defaults – mapping port
8888 from my system to port 8888 of the container, where the Jupyter server
listens. Again, if you are running Jupyter already on your system, that port
might be in use, and in that case you can switch the first number to something
different – eg, 9999:8888.

8

Press enter, and you’ll see some output like the above – one thing that admittedly
causes some confusion is the ‘Jupyter log’ messages that say a browser can’t be
found. We can ignore those; we’re running Jupyter inside the container, and
using our own browser to connect. We’ll change this in a future version to be
more clear!

8

At this point, if you’ve done either of the prior steps, you should have a running
container … but not really much to ‘show’ for it yet. That’s just because it runs
as a background process – to do anything, we need to connect to it. We’ll do
that by opening up a web browser, with Firefox shown here, and connect to our
local system, on the port we provided in those options we used when launching
it.

So, open up the browser, go to 127.0.0.1:8888 (or whatever port you used instead
of 8888), and press enter… and you should be greeted by…

9

The Jupyter Lab welcome screen! Of course, there’s not a lot to see here yet,
especially if we didn’t map in an existing directory, but that’s OK. We do have
this ‘tutorials’ directory, which is what we’re going to explore next.

10

Now, let’s pull up our tutorials – to do this, on the left side of the Jupyter screen,
double click on the tutorials. That should open the folder, and show you the
second image above, with the file ‘index.ipynb’ – this is our main page for the
tutorials. Double click on it, and open up the main page.

11

This is the main page for what will be a set of tutorials – though, at the moment,
there’s really just a quick start. We will be improving this in the future, but that
quick start is still going to give you a basic overview of using Jupyter with CESM.
There’s also a link to the forums for asking questions, but for now, let’s click on
the quick start link shown at the bottom of the screenshot above.

12

For anyone unfamiliar with a Jupyter Notebook, this is an example of what one
looks like – it has cells (seen by the blue line on the left) of text or
documentation, and, when you scroll down, you’ll see executable cells as well.
You COULD run this whole notebook, and it would proceed through each
runnable cell, creating a case, setting it up, building it, running it, running it
some more, and providing a quick visualization of the result… but it’s better to
go step by step. We’ll look at the first cell in the next slide.

13

Here’s out first runnable cell – it’s a pretty standard ‘create_newcase’ command,
with just a few small differences. For one, we don’t need to navigate to a
particular directory here; we know we’re using CESM 2.2, since that’s the image
we downloaded. And two, you’ll note we’re using a really coarse resolution,
and a ‘QPC4’ compset, which is an aquaplanet with CAM4 physics. That’s a
pretty low resolution, old-physics setup, so why are we using it? Mostly
because it’s fast – you’ve been running on Cheyenne, on multiple nodes,
whereas now we’re running on a laptop, most likely. This is something we can
reasonably run with limited memory and time. Note that the container is NOT
limited to these low-res modes – if you have a workstation or server with more
than 128GB of RAM and a lot of processors, you could use this same container
to run a fully-coupled B compset at 1-degree resolution, too. But this is good
for experimenting, and a lot of useful models, like single-column cases or simple
models, run fairly well on laptops.

(Finally, one note for people who are familiar with Jupyter is that we’re actually
doing something non-standard here, for the purposes of this very introductory
lesson. That is, normally to run code in a Jupyter cell, you’d want to specify it’s
to be run in a bash prompt, or we run Python code directly – here, we’re

14

cheating a bit, so that we’re running the exact same command we’d use in a
terminal inside the Jupyter environment. This only works for single commands,
and later tutorials will cover more correct ways to do things.)

14

After running the cell, you should see all the usual CESM output – this is identical to
what you see when running via a command line, and the only real difference is
that in the container, we detect how many processors you have, and use that
for the PE count. On modern laptops, this typically ranges from 2-8 cores, but
on Cheyenne this would use 36 (a single node).

15

As you progress through this quick start, you’ll do a few basic modifications, again
using commands you’re already familiar with. In this case, we’re setting up our
run for only 3 model days. On my laptop, a 2018 Mac with 4 cores, it takes
about 20 seconds per model day to run, so this should take about a minute….
But before we run, we still need to build the model. That alone can take about
five minutes.

So if you’re working along with this at your own pace, I recommend pausing this
here, and following the rest of the steps in the Quick Start. All told it should
take between 20-40 minutes to do everything, which includes running for a full
month, then plotting some output. Obviously the actual amount of time will
depend on your system’s processors, and how long it takes to download a little
bit of data.

16

OK, great! I hope you made it through all the steps in the quick start by now – if
you have, you should see two plots in your Notebook, the first looking just like
the one above. At this point, you’ve run a full CESM case on your own system,
via a Jupyter notebook, and did a quick Python-based visualization of the
output! This is, as the slide says, just an example of how you can combine
documentation, code and analysis or visualization in Jupyter notebooks.
They’re a really great way of organizing and displaying work, and you can share
CESM-Lab notebooks with others, and they can replicate your work. This is just
the very tip of the iceberg on CESM analysis and visualization, though - making
more complex visualizations is an ever-evolving topic, and NCAR recently
launched an Earth System Data Science (ESDS) initiative that I’d encourage you
to look into if this interests you, with the link above. It’s a growing community
offering expertise and ideas on how to use Python and notebooks to do data
science.

17

If you’ve gone through the whole Quick Start notebook, and find that you prefer
using a terminal over a Notebook, no problem! There are actually a few ways
of launching a terminal in the container – for now, we’ll just cover the Jupyter
method. To do this, just use the File -> New -> Terminal option.

18

This browser-based terminal is a full environment, using the bash shell by default,
and will let you navigate your files, run commands, edit files and use standard
Linux utilities just as you would on any other system like Cheyenne. As you can
see in the screenshot above, we can also directly call CESM commands, like
‘create_newcase’, without having to navigate to a particular CIME directory,
too.

19

Obviously, switching from running on a large cluster to a laptop, desktop or server
means you have fewer resources – if your laptop only has 8GB of RAM, you won’t be
able to run the CAM6 aquaplanet config at 1-degree, since it needs about 15GB of
RAM. But if you install it onto a workstation or server with 32GB, that should work
fine. (Our QPC4 @ f45_f45_mg37 only needed 0.6GB!). Another interesting data
point is this B1850C4_Tutorial compset, which is a coupled run but using less-
intensive CAM4 physics, and that only needs about 8GB of RAM to run, letting you
run a coupled model on some newer laptops.

Switching to data, CESM downloads input data that it needs it for a case, typically
when submitting it for the first time – for many cases, it’s relatively small
amounts, but some land cases require hundreds of gigabytes of data! Granted,
it only needs to download this once, saving it in the directory you mounted in,
and then it can be used for any number of runs of that compset, but be aware
that you may need lots of disk space.

Finally, not listed here, it should be obvious that performance also drops greatly if
you go from running on hundreds of processors to just a few. The key here,
though, is that these are all hardware limitations of whatever system you’re

20

using; the environment is a fully functional version of CESM. And we’ll talk now,
on the next slide, a bit about how we’re using the same technology that works
on your laptop to help you run this on university clusters in the near future.

20

So, if you think, “Hey, this is pretty neat, but I want to run large, fully-coupled runs
on my university cluster, but have trouble porting CESM..”, then drop me a line.
We’re working on another container specifically for this, and we’d love to
coordinate with you on trying it out!

We also have the ability to run on AWS, and soon, Azure, and hope to make those
public soon – this is great if you don’t have your own clusters, but it gets
expensive fast compared to local systems.

Another thing we’re looking at doing in the future is being able to ‘offload’ a run
from this laptop/desktop CESM-Lab, to NCAR or the Cloud if you have accounts
in either. This lets you do everything, even build cases, via a local system… but
then run on bigger ones with lots more resources.

Finally, we’re hoping to expand the tutorials in the near future – ideally offering a
full set of training examples for people to learn on, including running the model,
analyzing output and visualizing results.

21

Thanks again for your time, and I hope this helps you get started with CESM, and
Jupyter. Let us know any feedback you have so we can improve this to make it
even better suited for your needs!

22

