### Climate Intervention / Geoengineering Research using CESM(WACCM)

Simone Tilmes

National Center for Atmospheric Research (NCAR)



**CESM** Tutorial, 2021

### Climate Emergency due to Anthropogenic Impacts



(Un)-intended Climate Intervention:

Increase in greenhouse gas emissions Industrialization: pollution / particles in the atmosphere -> more reflection of sun light -> Relatively small changes in temperature change the balance of Earth to sustain our way of life.

- Unprecedented weather events
- Shifts in rainfall pattern
- Heat waves
- Mass extinctions (plants and animal)









### Climate Solutions to Sustain Global Temperatures on Earth









### Solar Radiation Management. Natural Analogues: Volcanoes







#### Natural analogue of stratospheric aerosols geoengineering but different ...

### Model Requirements for Stratospheric Aerosol Interventions

#### Fully coupled Earth System Model

• Atmosphere, Land, Ocean, Cryosphere

#### Driven by natural and anthropogenic forcings

- Greenhouse gases
- Emissions of aerosols and gases
- Land-use changes

#### Reproduce present day climate fairly well

- Historical temperature evolution
- Cooling effects of large volcanoes

# Well resolved tropospheric and stratospheric processes

 Coupling between aerosol microphysics, chemistry, radiation, dynamics



### CESM Whole Atmosphere Community Climate Model (WACCM)



#### **Model Setup**

- 0.9x1.25° horizontal resolution
- 140 km lid
- 70 vertical layers
- Interactive Quasi-Biennial Oscillation (QBO)
- Modal aerosol model
- Prognostic volcanoes and aerosol microphysics
- Full stratospheric chemistry
- Coupling to ocean, ice, land

Mills et al., 2016

### Stratospheric Aerosol Intervention Simulations using WACCM



Sulfur Injections 4 different latitudes in the stratosphere: 15N, 15S, 30N, 30S

## Feedback-Control Algorithm to reach climate objectives

- T<sub>0</sub> = Global mean temperature
- T<sub>1</sub> = Inter-hemispheric temperature gradient
- T<sub>2</sub> = Equator-to-pole temperature gradient

Mills et al., 2017, Tilmes et al., 2017, MacMartin et al, 2017, Richter et al, 2017, Kravitz et al., 2017

### Sulfate aerosols before and during the injection starting Jan 2022





### Geoengineering Large Ensemble (GLENS) Project using WACCM



#### Injection Rate Tg SO<sub>2</sub> per year





#### Tilmes et al. 2018 (BAMS)

### Geoengineering Large Ensemble (GLENS) Project using WACCM

#### Surface Air Temperature in 2075-2095 (2020 ref.)



Understand Impacts; Signal to Noise; Processes

Tilmes et al., BAMS 2018

### GLENS: Identifying Regional Climate Change

#### Precipitation in 2075-2095 (2020 ref.)

RCP8.5 (2075-2095 minus 2010-2030)



SAI (2075-2095) minus RCP8.5 (2010-2030)







### GLENS: Impacts on the Stratosphere



Tilmes et al., 2021, submitted

### **GLENS: Impacts on Total Column Ozone**



#### Tilmes et al., 2021. submitted

### Stratospheric Dynamics: Quasi Biennial Oscillation (QBO)



Kravtiz et al., 2020

### Scenarios, Uncertainties, Limitations, and Risks

High Emissions (RCP8.5) Low emissions scenario (RCP2.6) Stratospheric Aerosol Intervention



#### Need for policy relevant modeling experiments

- Impacts of SAI depend on the scenarios considered and the amount of SAI applied
- New experiments have been performed hat consider a Peak-shaving application

#### **Limitations and Risks**

- Technical and physical limitations: deployment, costs, efficiency
- Unknown future pathway
- Termination Effect

## Help from the community needed to analyze the different climate intervention scenarios.



*Tilmes et al., 2016, 2020*