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Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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• Artificial intelligence/machine 
learning is not “neutral” just 
because it is based on math

• Data and algorithms can 
reinforce society’s prejudices 

• Human programmers must 
ensure the AI/ML we develop 
is not biased 

References from Amy McGovern



Machine Learning for Climate Modeling: Applications
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Can machine learning contribute 
to climate modeling?

1) Climate Model Uncertainty

2) Detection of Extreme Events



SPM

 Summary for Policymakers

21

Figure SPM.7 |  CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to 
1986–2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections 
and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution 
using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081−2100 are given for all RCP scenarios as colored verti-
cal bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the projected mean and uncertainty 
(minimum-maximum range) of the subset of models that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea 
ice is given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is also indicated with dotted lines. The dashed line 
represents nearly ice-free conditions (i.e., when sea ice extent is less than 106 km2 for at least five consecutive years). For further technical details see the 
Technical Summary Supplementary Material {Figures 6.28, 12.5, and 12.28–12.31; Figures TS.15, TS.17, and TS.20}
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Using climate models to study future climate changes and uncertainties
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Image: IPCC AR5
Model spread introduces 
uncertainty in predictions



Earth system models are complex and process-rich
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and senescence of leaves; and changes in eco-
system structure and biogeography over decades
and centuries in response to natural disturbances
(e.g., wildfires), anthropogenic disturbances (e.g.,
land-use transitions), and climate change. Ongoing
model development aims to more authentically
represent plant demography and life history char-

acteristics using cohorts of individuals of similar
functional traits in vertically structured plant
canopies (18).
The three-dimensional carbon cycle models

used to estimate ocean uptake of anthropogenic
CO2 evolved from model tracer studies of ocean
physical circulation. Biogeochemical models ad-

ditionally track natural cycling of inorganic carbon,
alkalinity, macronutrients (nitrogen, phosphorus,
and silicon), and often O2; net organic matter
and CaCO3 production and export from the sur-
face ocean; particle sinking and respiration and
remineralization at depth; and air-sea CO2 (and O2)
gas exchange (19). Plankton ecosystem models

Bonan et al., Science 359, eaam8328 (2018) 2 February 2018 2 of 9
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Fig. 1. Representation of the biosphere in Earth system models (ESMs). The top
panel shows land and ocean as included in climate models, and the bottom panel shows
the additional processes included in ESMs. ESMs simulate atmospheric CO2 in response
to fossil fuel emissions and terrestrial and marine biogeochemistry. Some ESMs also
simulate atmospheric chemistry, aerosols, and CH4. Terrestrial processes shown on the
left side of the diagram include biogeophysical fluxes of energy, water, and momentum;
biogeochemical fluxes; the hydrologic cycle; and land-use and land-cover change (13).
The carbon cycle includes component processes of gross primary production (GPP),
autotrophic respiration (RA), litterfall, heterotrophic respiration (RH), and wildfire. Carbon
accumulates in plant and soil pools. Additional biogeochemical fluxes include dust
entrainment, wildfire chemical emissions, biogenic volatile organic compounds (BVOCs),
the reactive nitrogen cycle (Nr), and CH4 emissions from wetlands. Ocean processes are shown on the right side of the diagram. Physical processes
include sea ice dynamics, ocean mixing and circulation, changes in sea surface temperature (SST), and ocean-atmosphere fluxes. The gray shaded
area depicts the marine carbon cycle, consisting of the phytoplankton-based food web in the upper ocean, export and remineralization in the deep sea
and sediments, and the physiochemical solubility pump controlled by surface-deep ocean exchange (100).
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Community Land Model (CLM) component of CESM
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Focus on the land 
model component

CESM Components

Figure from Alexander 
and Easterbrook (2011)



Land Model Parameters
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The Land Model Working Group
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Is hereby granted to:

for best student or postdoc performance at 2019 LMWG Workshop

Heterotrop.
respiration

Photosynthesis

Autotrophic
respiration

Litterfall

N
uptake

Vegetation C/N

Soil
C/N N mineralization

Fire

Biogeochemical cycles

Phenology

BVOCs

N dep
N fix

Denitrification
N leaching

CH4

Root litter

N2O

Evaporation

Melt
Sublimation

Throughfall

Infiltration
Surface 
runoff

Evaporation

Transpiration

Precipitation
Hydrology

Sub-surface 
runoff

Water table
Saturated Zone

Soil

Saturated
fraction

Impermeable Bedrock

Absorbed solar

D
iff

us
e 

so
la

r

D
ow

nw
el

lin
g

lo
ng

w
av

e 

Reflected solar 

Em
itt

ed
 

lo
ng

w
av

e

Se
ns

ib
le

 h
ea

t f
lu

x

La
te

nt
 h

ea
t f

lu
x

ua0

Momentum flux
Wind speed

Ground 
heat flux

Surface energy fluxes

Aerosol 
deposition

Soil (sand, clay, organic)

Dust

SCF
Surface
water

Bedrock

???

Schematic of NCAR’s Community Land Model (CLM), version 5

Lawrence et al. (2019)



Can we use machine learning to investigate model uncertainties?
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The Game of Climate Model Biases 

Find new study: 
update old, wrong 
parameter value 

Add new structure to 
account for new knowledge 

Two alternative 
algorithms for poorly 
understood process.  

Different but-still-
reasonable value 
gives better answers 

Use value 
calibrated at 
single site. 

Figure from Rosie Fisher

Hand-tuning 
parameter values 
takes a long time 
(many model runs, 
trial and error). Can we use machine 

learning to streamline 
this process?
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Land Model Emulation for Parameter Calibration

Objective: Train neural networks to emulate CLM5 output, allowing for many fast 
computations with different parameter values.

Output: CLM5 predictions

The Land Model Working Group
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Dagon et al. 2020



Increase in Computational Efficiency
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~2 hours per 
simulation

2.6 seconds to 
generate predictions!

Land model perturbed 
parameter ensemble Machine learning emulator
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Approach: Emulate, calibrate, test.

Dagon et al. 2020

Emulator predictions vs. CLM output Comparing model bias with calibrated (left) and 
default (right) parameters

Land Model Emulation for Parameter Calibration
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Machine Learning for Climate Modeling: Applications
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Can machine learning contribute 
to climate modeling?

1) Climate Model Uncertainty

2) Detection of Extreme Events



Community Atmosphere Model (CAM) component of CESM
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Focus on the 
atmosphere model 
component

CESM Components



Extreme Precipitation Has Significant Consequences
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Oroville Dam 
spillway overflowing 
in February 2017 
following an 
atmospheric river 
event in California.

Flooding after Hurricane 
Harvey in August 2017.



Image Recognition for Detecting Extreme Events

ClimateNet: a community-sourced 
expert-labeled dataset to improve and 
accelerate machine learning applications 
in weather and climate
Ø Focus on detecting atmospheric rivers 

(ARs) and tropical cyclones (TCs).

Images courtesy of Karthik Kashinath, NERSC
https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet
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Prabhat et al. (2021)



Extreme Weather Detection

Objective: Apply existing machine learning-based detection algorithms to 
automate the classification of synoptic-scale weather features.

Atmospheric Rivers (AR) and 
Tropical Cyclones (TC)

Applying trained ClimateNet algorithm (Prabhat et 
al., 2021) to detect ARs and TCs globally in high 
resolution (0.25°) coupled CESM simulations.

Frontal ID

Applying trained DL-Front algorithm (Biard and Kunkel, 
2019) to detect front types over North America in 
coupled CESM simulations.
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Project Goals:
• Explore validation and explainability of ML-based 

algorithms to build confidence and trust.
• Develop additional detection algorithm for 

mesoscale convective systems (MCS).
• Connect identified features with extreme 

precipitation events.

Deep Learning Infrastructure for MCS Detection (Maria Molina)

Validation of DL-Front using NWS Coded Surface Bulletin (CSB)

Extreme Weather Detection
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Machine Learning Challenges and Opportunities

Challenges
• Interpretability (i.e., machine learning as a “black box”)
• Obtaining high quality training data
• Physics-driven and data-driven models
• Working with “Big Data”
• Research across disciplines

Opportunities
• Interdisciplinary projects
• Uncertainty quantification
• Parameterization
• Climate prediction
• Detection and attribution

See also Karpatne et al. (2019), Rolnick et al. (2019) via XKCD
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https://xkcd.com/1838/


ML/AI Online Learning and Workshop Opportunities
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• September 13-17, 2021 NOAA 3rd Workshop on Leveraging AI in Environmental Sciences: 
https://2021noaaaiworkshop.sched.com/info

• July 2021 Trustworthy Artificial Intelligence for Environmental Science (TAI4ES) virtual Summer School:
https://www2.cisl.ucar.edu/tai4es

• July 2020 Artificial Intelligence for Earth System Science (AI4ESS) Summer School: 
https://www2.cisl.ucar.edu/events/summer-school/ai4ess/2020/artificial-intelligence-earth-system-science-
ai4ess-summer-school

• 2019 and 2020 AGU Tutorials on Machine Learning and Deep Learning for Environmental and Geosciences: 
https://sites.google.com/lbl.gov/ml4egs/

• 2nd NOAA Workshop on Leveraging AI in Environmental Science (2020-2021): 
https://www.star.nesdis.noaa.gov/star/meeting_2020AIWorkshop.php

• US CLIVAR Data Science Working Group Webinar Series on Machine Learning (2020-2021): 
https://usclivar.org/working-groups/data-science-working-group

• ECMWF 2020 Machine Learning Seminar Series: https://www.ecmwf.int/en/learning/workshops/machine-
learning-seminar-series

https://2021noaaaiworkshop.sched.com/info
https://www2.cisl.ucar.edu/tai4es
https://www2.cisl.ucar.edu/events/summer-school/ai4ess/2020/artificial-intelligence-earth-system-science-ai4ess-summer-school
https://sites.google.com/lbl.gov/ml4egs/
https://www.star.nesdis.noaa.gov/star/meeting_2020AIWorkshop.php
https://usclivar.org/working-groups/data-science-working-group
https://www.ecmwf.int/en/learning/workshops/machine-learning-seminar-series


Summary
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v Machine learning emulators trained to reproduce land model output with greater 
computational efficiency; emulator predictions are optimized to minimize error between 
model and observations.

v Machine learning-based detection algorithms are developed and applied to capture high-
impact weather events; validation and interpretation are key ongoing steps to building 
confidence in predictions.

v Ongoing CESM-related machine learning projects: Earth system predictability, model 
component parameterizations (e.g., CAM6 and MOM6), process understanding for sea ice.

Thanks!
Questions?
kdagon@ucar.edu
@katiedagon


