Volcanic and Solar Forcing in CCSM4

Caspar Ammann, Andrew Conley
Rolando Garcia, Doug Kinnison, J.F. Lamarche, Dan Marsh, Simone Tilmes, Francis Witt, Bill Collins, Jeff Kiehl

Goals Volcanic Aerosol

- Implement Volcanics in RRTMG
- Fix broken implementation CAM-RT 3.5+
- Merge assumptions CAM / WACCM
- CAM-climate: Aerosol radiative forcing
- Move to evolving aerosol size distribution
- WACCM-chemistry: evolving Surface Area Density
- Radiation consistent with chemistry: evolving size
- Fix tropopause "leak"

Status

Baseline solution: (CAM-RT / RRTMG):

- Single size distribution radiation (successful for CAM and WACCM)
- Interface works for CAM and WACCM
- Tropopause fix in place (lat-function)

Improved version (if RRTMG selected):

- Evolving aerosol effective radius, fixed width of log-normal size distribution
- Optics table for evolving size
- Determine tropopause (instantaneous)

StatuS (ready for CCSM testing)

Baseline solution: (CAM-RT / RRTMG):

- Single size distribution (successful for CAM and WACCM)
- Interface works for CAM and WACCM
- Tropopause fix in place (lat-function)
- Simulations with prescribed SSTs Improved version (if RRTMG selected):
- Evolving aerosol effective radius, fixed width of log-normal size distribution
- Optics table for evolving size
- Determine tropopause (instantaneous)

Pinatubo Aerosol Mass

Column Mass

TOM Zonal Rad Perturbations

Net Solar Forcing at TOM

Net Longwave Forcing at TOM

- SW peak ~-9.4 W/m²
- LW peak $\sim 3.4 \mathrm{~W} / \mathrm{m}^{2}$

Pintubo Radiation: SW (Blue), LW (Red) and Total (Black)

Pintubo Radiation (40N-40S)

Radiative Forcing RRTMG vs ERBS

Longwave Heating Rate

Volcanic Heating Rates (K/day)

Currently LW>>SW heating

- based on wide distribution
- Narrower width will reduce this issue

Prognostic Volcanic Aerosol Radii

Russell: Observed aerosol show evolution
Simple Mass-concentration driven parameterization (calibrated against SAGE-derived particles in WACCM)

Observations Total Solar Irradiance New TSI Level: 1361 Wm²

Curtsey: G. Kopp, LASP

Total Solar Irradiance

TSI-level and trends

Smaller Trend!

SCON (TSI) for CCSM4 spinups?

Suggested TSI (W/m²)

- Single spinup: 1361
- Present: 1361.3
- PreInd: 1360.7

Options to include Solar Forcing

- Status Quo: TSI change without spectral range
- Advanced: TSI+spectral but no ozone feedback
- Most realistic: TSI+spectral change and modulated ozone climatology based on WACCM predicted.

Options to include Solar Forcing ready for CCSM testing

- Status Quo: TSI change without spectral range
- Advanced: TSI+spectral but no ozone feedback
- Most realistic: TSI+spectral change and modulated ozone climatology based on WACCM predicted.

Solar Forcing in CCSM

AR4
SpectTSI
solar input
Spectral TSI + Ozone solar + feedback

Total Solar Irradiance for CCSM4 for 1860-2400

Surface Temperature (Run with observed SSTs)

Uncertain Scaling (but not phase) Models and ${ }^{10} \mathrm{Be}$ derived solar variability

Solar Irradiance Models (Wang et al.2005)

Century-scale:
${ }^{10} \mathrm{BE}$ only slightly larger than
11-year cycle? (Wang et al. 2005, Muscheler et al., 2007...)
${ }^{10} \mathrm{Be}$ Reconstructions (Muscheler et al. 2007)

Temporal Resolution of TSI

Standard IPCC:

- TSI annual (AR4)
- TSI annual smaller trend (AR5)

Capability:

- Monthly solar irradiance
- Time varying solar spectrum
- Coupled/param. ozone

Volcanic Visible Optical Depth and Column Loading

VOLC_MMR optical depth in visible band

volcanic aerosol column mass

Overall pattern: Ok Mid-high-latitudes: looks good
Tropics: too much mass -> optically too thick

Solar Forcing in CCSM

TSI_only Spectral_only
AR4 pure solar cycle feedback

Spec+TSI Spectral TSI + Ozone solar input solar +

