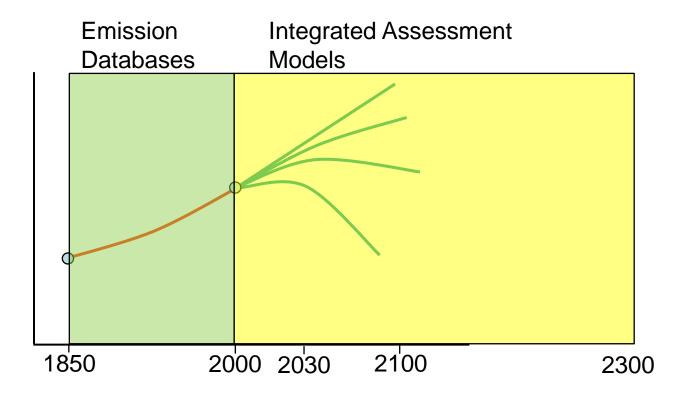

Emissions and chemistry simulations for AR5

Jean-François Lamarque National Center for Atmospheric Research (on leave at NOAA)

JGR, 2008

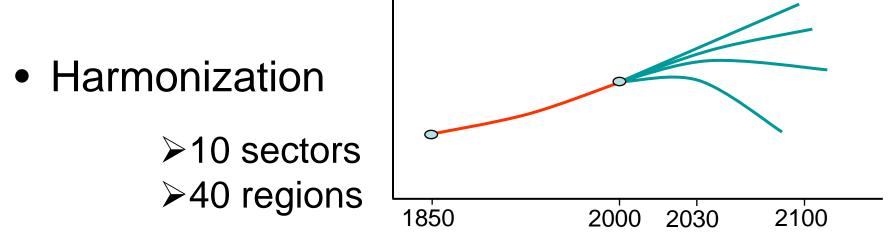
Representative Concentration Pathways


Requirements (Sept. 2007)

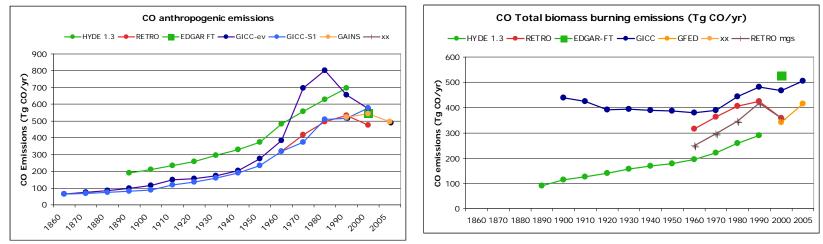
Variable	Units	Spatial scale				
		Concentrations	Regional and sectoral emissions			
Greenhouse gases	· · ·					
CO ₂ (fossil fuel, industrial, land use change)	ppm and Pg/yr	Global average	Sum			
CH ₄	ppb and Tg/yr	Global average	Grid ¹			
N ₂ O	ppb and Tg/yr	Global average	Sum			
HFCs ²	ppb and Tg/yr	Global average	Sum			
PFCs ²	ppb and Tg/yr	Global average	Sum			
CFCs ²	ppb and Tg/yr	Global average	Sum			
SF ₆	ppb and Tg/yr	Global average	Sum			
Aerosols ²			-			
Sulfur (SO ₂)	Tg/yr	Generated by CM community ³	Grid			
Black Carbon (BC)	Tg/yr	Generated by CM community ³	Grid			
Organic Carbon (OC)	Tg/yr	Generated by CM community ³	Grid			
Chemically active gases						
СО	Tg/yr	Generated by CM community ³	Grid			
NO _x	Tg/yr	Generated by CM community ³	Grid			
VOCs ²	Tg/yr	Generated by CM community ³	Grid			
NH ₃	Tg/yr	Generated by CM community ³	Grid			

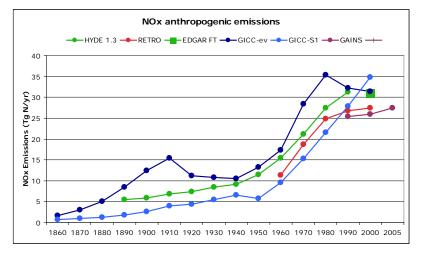
Grid is 0.5°

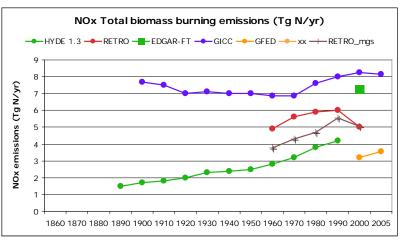
Emissions for AR5


International effort to provide decadal emissions 1850-2300, consistent across 2000, for anthropogenic (land, ship and aircraft) and biomass burning emissions of ozone precursors, aerosols and ODSs for each RCP

Process

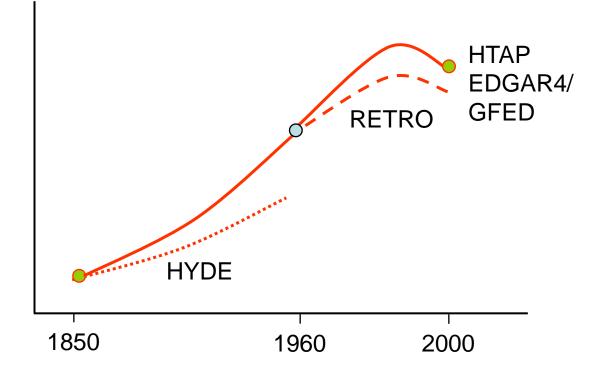

- Workshop in May 2008 with representatives from global emission inventories and IAMs
- Focus on regional and sectoral analysis of existing inventories
- Use regional information where available (EPA/EMEP for example), global inventories otherwise
- Make emissions useful for variety of chemistry modeling efforts


Anchor point in 2000



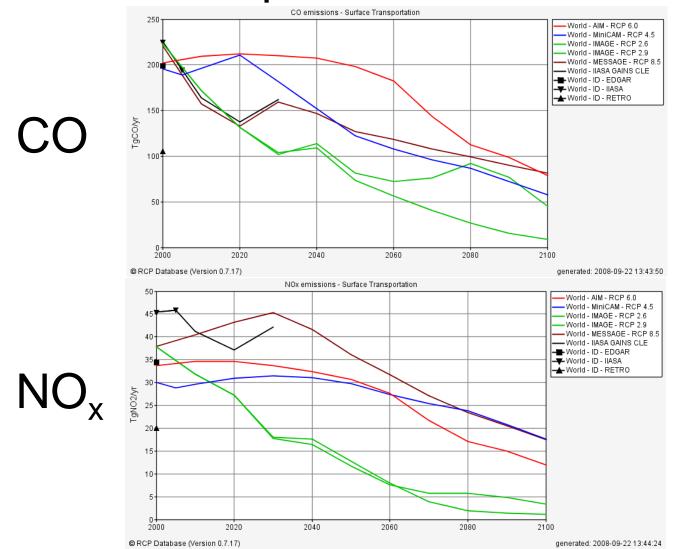
- Best estimate for 2000: combination of global and regional datasets
- Biomass burning: 1997-2006 Average from GFED

How sure are we about past trends in emissions?

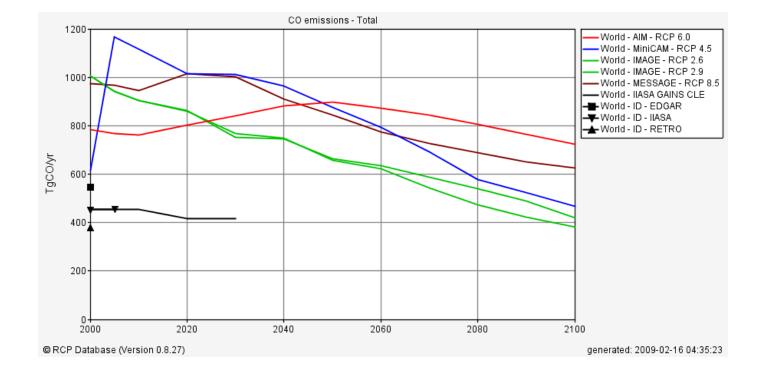

Method Summary

1) year 2000 handshake

Sector	Species									
	NOx	N2O	CO	NMVOC	SO2	BC	OC	NH3	CH4	CO2
ENE	HTAP	EDGAR4	HTAP	HTAP	Smith	B/L	B/L		HTAP	EDGAR4
IND	HTAP	EDGAR4	HTAP	HTAP	Smith	B/L	B/L		HTAP	EDGAR4
TRA	HTAP	EDGAR4	HTAP	HTAP	Smith	B/L	B/L	EDGAR4	HTAP	EDGAR4
DOM	HTAP	EDGAR4	HTAP	HTAP	Smith	B/L	B/L		HTAP	EDGAR4
SLV	HTAP	EDGAR4	HTAP	HTAP					HTAP	EDGAR4
AGR	HTAP	EDGAR4	HTAP	HTAP		B/L	B/L	EDGAR4	HTAP	EDGAR4
AWB	HTAP	EDGAR4	HTAP	HTAP	?	B/L	B/L	EDGAR4	HTAP	EDGAR4
WST	HTAP	EDGAR4	HTAP	HTAP	?			EDGAR4	HTAP	EDGAR4
ships	Eyring		Eyring	Eyring	Eyring	Eyring	Eyring		Eyring	Eyring
aviation	Lee					Lee				Lee
FOR	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED
WOD	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED
GRA	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED	GFED
plants	MEGAN?		MEGAN?	MEGAN?						
soils										
ocean										
wetlands										
volcanoes										


D/I - Dond / Liousso

Proposed Methodology



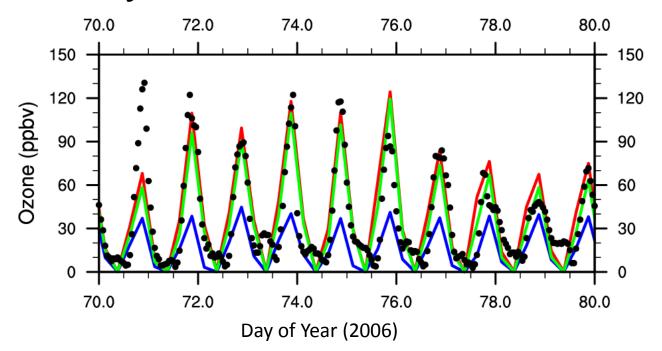
No inventory is perfect!

Preliminary Scenario Results: Transportation sector

Emissions from RCPs

Status and schedule

- 2000 and 1850 emissions are available (only OC/BC AWB 1850 missing)
- 1850-2000 shipping, aircraft and biomass burning already available
- All other time periods in spring 09


Parallel tracks: 1850-2000 2000-2300

 Additional emissions from RCPs: summer 09 and beyond

Interactive chemistry simulations in AR5

- Long-term simulations: super-fast chemistry with LINOZ/PSC parameterization in stratosphere (see Philip's talk):3+ ensemble members?
- Decadal projection: reduced NMHC

Air quality: Comparison with Mexico City surface observations

Red: Full mechanism Green: Intermediate mechanism Blue: Fast mechanism Dots: observations On most days, full and intermediate capture well the diurnal cycle and amplitude; the fast mechanism is much lower

Interactive chemistry simulations in AR5

- Long-term simulations: super-fast chemistry with LINOZ/PSC parameterization in stratosphere (see Philip's talk):3+ ensemble members?
- Decadal projection: reduced NMHC

Will start testing both options in Track 5 setup in the next few weeks

Plans for AR5 (historical and long-term simulations)

- Stratospheric ozone
 - 1. From reconstruction (SPARC activity)
 - 2. From online simulations (fast mechanism)
 - 3. From offline CAM simulations (reduced mechanism + strat)
- Tropospheric ozone
 - 1. From online simulations (fast mechanism)
 - 2. From offline CAM simulations (reduced mechanism + strat)
- Other gases (incl. methane)
 - 1. From online simulations (fast mechanism)
 - 2. From offline CAM simulations (reduced mechanism + strat)
 - 3. From observations/IAMs (surface concentrations)

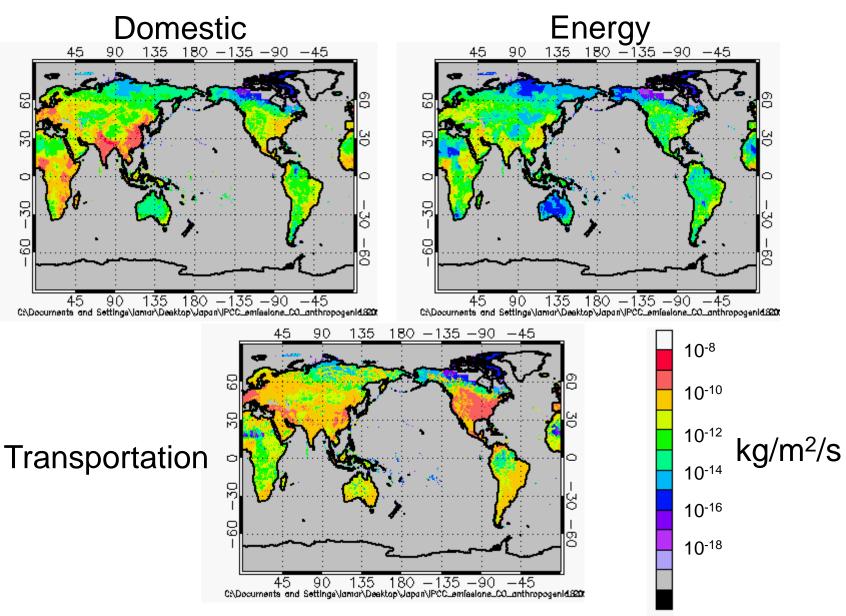
Plans for AR5 (decadal prediction)

Stratospheric ozone

- 1. From CCMval (SPARC activity)
- 2. From offline CAM simulations (reduced mechanism + strat)
- 3. From online simulations (fast mechanism)

• Tropospheric ozone

- 1. From online simulations (fast mechanism, not for AQ)
- 2. From online simulations (reduced mechanism)
- 3. From offline CAM simulations


Other gases (incl. methane)

- 1. From online simulations (fast mechanism)
- 2. From online simulations (reduced mechanism)
- 3. From offline CAM simulations
- 4. From IAMs

Chemistry MIP for AR5

- Coordinated by D. Shindell (NASA/GISS) and myself (in contact with CCMval and AEROCOM)
- Will define science questions and necessary outputs
- Simulations scheduled to start in 09
- Define climatology (1850-2300) for AOGCMs
- Continuous (Phase 1) and time-slice experiments (Phase 2)
- Collaboration with hindcast (1960-present) intercomparison (AC&C Activity #1)

CO emissions for 2000

Chemistry simulations in AR5

- Emissions consistent with RCPs
- Tropospheric (and stratospheric) chemistry in offline simulations (long-term IPCC simulations)
- Tropospheric chemistry online in short-term simulations; possibly fast scheme for long-term
- Enough simulations to track tails of PDF (air quality)
- Enough simulations to identify the role of variations in emissions

Challenges

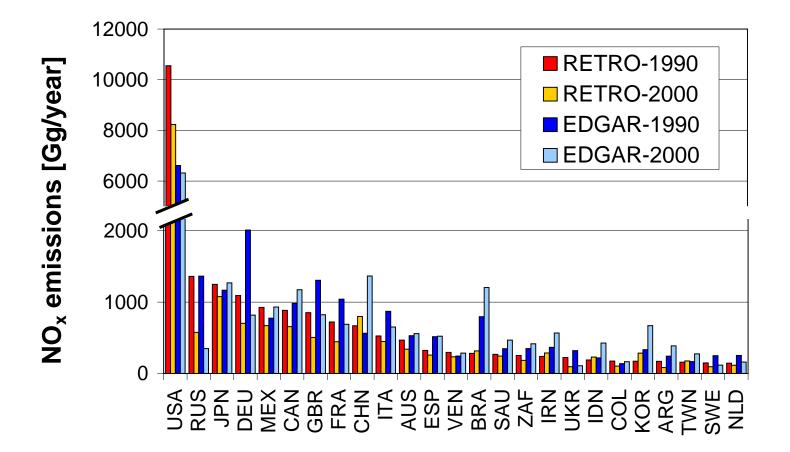
- Ensure correct trends in early 21st century emissions
- Gridding of future emissions is (mostly) linked to population scenarios
- No consistency with historical landuse
- No natural and future biomass burning emissions
- How to merge tropospheric and stratospheric ozone?
- How well are we simulating regional AQ? Who will use this information?
- No AQ focus on the development of the RCPs; can this be tackled by using emissions for each RCP from all the IAMs?
- Error estimate?

Why consider chemistry in a climate model?

- 1. Provides consistent distribution of radiativelyactive greenhouse gases (troposphere and stratosphere)
- Provides distribution of oxidants for aerosol production, including secondary-organic aerosols*
- 3. Provides distribution of constituents relevant to air quality
- 4. Provides interaction with biogeochemistry: black carbon deposition, nitrogen deposition, ozone damage

After the emissions are available

- Emissions will be centralized and publicly distributed
- Testing of emissions will table place in the latter part of the year to identify major issues
- Additional emission datasets will become available from IAMs to study the sensitivity of chemical composition to the trajectory used in the scenario


Recent development in CAMchem:fast chemistry

- Minimal set of chemistry to reproduce mean and response to changes in emissions/climate for
 - 1. Ozone (methane chemistry and linearized stratospheric chemistry)
 - 2. Oxidants (for methane lifetime and for aerosol formation)
- Leads to a more consistent picture in main drivers of atmospheric composition and climate
- Additional cost of approx. 40%

CAM with no chemistry = 6.7 years/day super-fast chemistry = 3.5 years/day

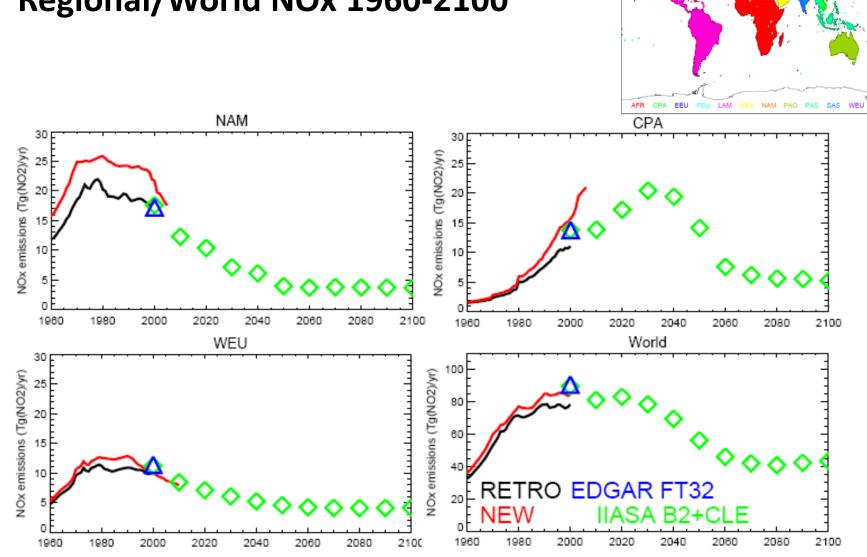
 Developed at LLNL by P. Cameron-Smith, M. Prather and collaborators

Country-level comparison of NO_x emissions from traffic

Method Summary

2) 1960-2000

Sector	Species									
	NOx	N2O	CO	NMVOC	SO2	BC	OC	NH3	CH4	CO2
ENE	RETRO	HYDE	RETRO	RETRO	Smith	B/L	B/L		HYDE	HYDE
IND	RETRO+	HYDE	RETRO+	RETRO+	Smith	B/L	B/L		HYDE	HYDE
	HYDE		HYDE	HYDE						
TRA	RETRO	HYDE	RETRO	RETRO	Smith	B/L	B/L	HYDE	HYDE	HYDE
DOM	RETRO	HYDE	RETRO	RETRO	Smith	B/L	B/L		HYDE	HYDE
SLV	HYDE	HYDE	HYDE	HYDE					HYDE	HYDE
AGR	HYDE	HYDE	HYDE	HYDE		B/L	B/L	HYDE	HYDE	HYDE
AWB	HYDE	HYDE	HYDE	HYDE		B/L	B/L	HYDE	HYDE	HYDE
WST	HYDE	HYDE	HYDE	HYDE				HYDE	HYDE	HYDE
ships										
aviation										
FOR	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO
WOD	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO
GRA	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO	RETRO
plants	MEGAN?		MEGAN?	MEGAN?						
soils										
ocean										
wetlands										
volcanoes										
FRAN	4 1 .	1 . 105								


EDGAR4 goes back to 1970

Method Summary

3) 1850-1960

Sector	Species									
	NOx	N2O	СО	NMVO C	SO2	BC	OC	NH3	CH4	CO2
ENE	HYDE	HYDE	HYDE	HYDE	Smith	B/L	B/L	HYDE	HYDE	HYDE
IND	HYDE	HYDE	HYDE	HYDE	Smith	B/L	B/L	HYDE	HYDE	HYDE
TRA	HYDE	HYDE	HYDE	HYDE	Smith	B/L	B/L	HYDE	HYDE	HYDE
DOM	HYDE	HYDE	HYDE	HYDE	Smith	B/L	B/L	HYDE	HYDE	HYDE
SLV	HYDE	HYDE	HYDE	HYDE				HYDE	HYDE	HYDE
AGR	HYDE	HYDE	HYDE	HYDE		B/L	B/L	HYDE	HYDE	HYDE
AWB	HYDE	HYDE	HYDE	HYDE		B/L	B/L	HYDE	HYDE	HYDE
WST	HYDE	HYDE	HYDE	HYDE				HYDE	HYDE	HYDE
ships										
aviation										
FOR	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC
WOD	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC
GRA	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC	GICC
plants										
soils										
ocean										
wetlands										
volcanoes										

Regional/World NOx 1960-2100

From D. Stevenson

Simulations in AR5

- Stratospheric ozone
 - 1. From CCMval (SPARC activity)
 - 2. From atmosphere-only model simulations (reduced mechanism + strat.)
 - 3. From online chemistry climate simulations (linearized ozone chemistry)
- Air quality
 - 1. From online chemistry climate simulations (reduced mechanism)
- Tropospheric ozone
 - 1. From atmosphere-only simulations (reduced mechanism)
 - 2. From online chemistry climate simulations (fast/reduced mechanism)
- Other gases (incl. methane)
 - 1. From atmosphere-only simulations (reduced mechanism)
 - 2. From online chemistry climate simulations (fast/reduced mechanism)
 - 3. From observations/IAMs

Long-term simulations Decadal prediction simulations