

Response to Convective Enhancement of Surface Fluxes in CAM

Rich Neale, Dani Coleman and Gunilla Svensson

Motivation

- Latent heat fluxes are too low in the deep tropics
- Even if grid mean surface winds are correct, no guarantee grid mean fluxes (<= sub-grid winds) will be correct
- Free convection limit already included in surface flux formulation
- Precipitating convection gustiness not included
- Follow Redelsperger et al. (2000) to determine surface flux enhancement based on
 - Precipitation
 - Updraft mass flux
 - Downdraft mass flux

Low latent heat flux in the convecting deep tropics LHFLX Error – CAM3.6

DJF

ERA40

Rainfall Halo

Dry regions coincide with low latent heat flux regions

Surface fluxes in low wind conditions

- Parameterizing surface fluxes in low wind conditions can be problematic
- Model assumes free convection regimes give enhanced surface fluxes

- Lowest mean surface winds are seen in the deep tropics
- Region of strongest deep convection
- Significant multidirectional wind gusts that average to near zero

Convective gustiness relationships

JJA Latent Heat Flux Changes

Differences with convective enhancement of surface fluxes (5-yr runs)

Precipitation based

JJA Rainfall

Differences with convective enhancement of surface fluxes (5-yr runs)

Precipitation based

Updraft based

Downdraft based

Existing error

DJF Rainfall

Differences with convective enhancement of surface fluxes (5-yr runs)

JJA Circulation/Teleconnection Changes

Differences with convective enhancement of surface fluxes (5-yr runs)

Updraft based

rmse = 0.15

mean = 0.08

hectometers

mean = 0.04

hectometers

rmse = 0.13

hectometers

Existing error

mean = -0.08

rmse = 0.24

0.24

Equally coherent teleconnections in DJF

DJF Surface Stresses

Differences with convective enhancement of surface fluxes (5-yr runs)

Existing error

JJA ISV lag correlation (precip,U850, contours) Less westward propagation in the Indian Ocean? - Maybe

Summary

Identified deep convection regions with low surface latent heat flux
Included analytical relationships to specify a gust velocity based on convective rainfall, updraft mass flux, downdraft mass flux
Order of strength of effect rain, UD, DD

Local effects include

- •Enhanced surface LH flux in low wind regions
- Increased precipitation
- Increased mid-tropospheric temperature (good)
- •Increased mid-trop humidity (bad, but a global problem)

•Remote effects

- •Reduced tropical rainfall 'halo'
- Summer monsoon shift eastwards
- •Stationary wave propagation correction

Some impacts on intraseasonal activity (tbd - Dani)
Further investigation (changes coupling fluxes – eek!)

