

Quantifying uncertainties in future projections using a perturbed land surface parameter experiment

Erich Fischer

Climate & Global Dynamics Division, NCAR, Boulder, CO

Thanks to: Dave Lawrence, Ben Sanderson, Keith Oleson and Jerry Meehl

NCAR

Motivation (2003 European heat wave)

Objectives

- Quantifying uncertainties in future projections of extreme events due to parameter uncertainties in the land-surface scheme
- Exploring land-atmosphere coupling strength in simulations with different land surface parameter sets

Experimental setup

Model setup (motivated by climateprediction.net and QUMP)

- CAM/CLM 3.5 with slab ocean
- 30-year simulations with 1xCO₂ and 2xCO₂
- different combinations of perturbed parameters (may interact nonlinearly)
- 5 parameters with a total experiment of 108 ensemble members
 -> 8100 model years of daily data!

Experimental setup

Parameter perturbations

- Selected land surface parameters are poorly constrained
- Perturbations should be justifiable and if possible based on literature and/or observational studies
- Parameters are tested using offline CLM version forced with observed atmosphere

Selected parameters

- Vegetation albedo: leaf albedo perturbed by +/- 20% for all PFTs
- Snow albedo: empirical constant in aging function -> faster and slower decrease in snow albedo
- Momentum roughness length (doubled, corresponds roughly to values used in the ECMWF LSM Tessel)
- Decay factor f in the calculation of subsurface runoff, which affects water table depth (moderate and strong increase of WT depth, based on Niu et al. 2005)
- Vcmax (see next slide)

V_{cmax} (max. of carboxylation)

	SLA std	max	CN_L std	max
NET temperate	0.010	0.0136	35.0	46.0
NET boreal	0.008	0.0116	40.0	51.0
NDT boreal	0.024	0.0282	25.0	30.6
BET tropical	0.012	0.0156	30.0	37.0
BET temperate	0.012	0.0156	30.0	37.0
BDT tropical	0.030	0.0410	25.0	30.4
BDT temperate	0.030	0.0410	25.0	30.4
BDT boreal	0.030	0.0410	25.0	30.4
BES temperate	0.012	0.0171	30.0	42.0
BDS temperate	0.030	0.0410	25.0	37.0
BDS boreal	0.030	0.0410	25.0	37.0
C_3 grass arctic	0.050	0.0660	25.0	33.6
C_3 grass	0.050	0.0660	25.0	33.6
C_4 grass	0.050	0.0660	25.0	33.6
Crop1	0.050	0.0660	25.0	33.6
Crop2	0.050	0.0660	25.0	33.6

V_{cmax}: maximum carboxylation capacity of Rubisco at 25°C, which controls photosynthesis and affects transpiration (Thornton et al. 2007)

$$V_{max} = \frac{1}{SLA \times CN_L} F_{LNR} \frac{1}{F_{NR}} a_R,$$

SLA: specific leaf area, ratio of leaf area to leaf mass

CN_L: leaf carbon:nitrogen ratio (gC gN⁻¹)

Perturbations based on 1 standard deviation given in White et al. (2000)

V_{cmax} (perturbed vs. CTL)

N. Hemisphere Land (EQ-90N,180W-180E)

Annual global energy budget:			
latent heat	-1.95W/m ²		
transpiration	-3.76W/m ²		
ground evap.	+1.70W/m ²		
sensible heat	+2.11W/m ²		

Half of the reduction in transpiration is compensated by enhanced ground evaporation

Precipitation is substantially reduced over some regions

Global annual land temperature

Range of JJA temperatures (1xCO₂)

95th percentile of daily JJA temperatures

• Ensemble range is larger for temperature extremes

• LSM parameters affect not only mean but also temperature variability

Role of parameters (explained variance)

- Current state can be remarkably well described by a multiple linear regression
- Role of parameters differs regionally (generally veg. albedo dominant)
- Approach fails to explain response to 2xCO₂ (highly nonlinear)

Role of parameters (JJA precipitation)

- Different parameters for precipitation than for temperature
- Water table depth is dominant over arid regions, whereas Vcmax dominates over vegetated regions

Land temperature response to 2xCO₂

Regional change of 95th perc. (JJA)

 In contrast to current climate state, the response two 2xCO₂ depends on parameters in a highly non-linear way! NCAR

Regional JJA precipitation change

- Land parameters may even change the sign of the JJA precipitation response
- CAM/CLM 3.5 seems to be generally wet and projects less droughts than other CMIP3 models

Soil moisture memory (lagged autocor.)

• Soil moisture memory calculated as a simple lagged autocorrelation differs substantially between ensemble members

Soil moisture-precipitation coupling

• Very simple approach to determine soil moisture-precipitation coupling indicates large range of coupling strengths

NCAR

Coupling CLM pert. exp. vs. CMIP3

• Range of correlations in CLM ensemble exceeds the range of CMIP3 models!

Note that simulation length is much shorter (-> larger spread)

Summary and outlook

- Uncertainties in land surface parameters contribute to relatively large range of realizations of current climate and of responses to doubling of CO₂, particularly at regional scale
- Land surface parameters have larger effect on extremes than on mean climate
- Simple analyses indicate that soil moisture memory and landatmosphere coupling is highly sensitive to choice of land surface parameters

Next steps:

- Analysis of widely-used drought and heat wave indices
- Validation with observational data sets and comparing of ensemble range against CMIP3 runs
- Detailed analysis of soil moisture memory and coupling strength

Parameter determining JJA 95th percentile

Central North America

Soil moisture-evapotranspiration coupling

- Very simple approach to determine soil moisture-precipitation coupling
- Generally low soil moisture-precipitation coupling
- Range of correlation between members is very large

Vegetation albedo

Luove ». aleas reas avoid						
	α_{vis}^{leaf} std	min	max	α_{nir}^{leaf} std	min	max
NET temperate	0.070	0.056	0.084	0.350	0.280	0.420
NET boreal	0.070	0.056	0.084	0.350	0.280	0.420
NDT boreal	0.070	0.056	0.084	0.350	0.280	0.420
BET tropical	0.100	0.080	0.120	0.450	0.360	0.540
BET temperate	0.100	0.080	0.120	0.450	0.360	0.540
BDT tropical	0.100	0.080	0.120	0.450	0.360	0.540
BDT temperate	0.100	0.080	0.120	0.450	0.360	0.540
BDT boreal	0.100	0.080	0.120	0.450	0.360	0.540
BES temperate	0.070	0.056	0.084	0.350	0.280	0.420
BDS temperate	0.100	0.080	0.120	0.450	0.360	0.540
BDS boreal	0.100	0.080	0.120	0.450	0.360	0.540
C_3 grass arctic	0.110	0.088	0.132	0.580	0.464	0.696
C_3 grass	0.110	0.088	0.132	0.580	0.464	0.696
C_4 grass	0.110	0.088	0.132	0.580	0.464	0.696
Crop1	0.110	0.088	0.132	0.580	0.464	0.696
Crop2	0.110	0.088	0.132	0.580	0.464	0.696

Table 2: α_{leaf} leaf albedo

Vegetation albedo perturbed by +/-20%, which represents approx. the maximum regional bias

Erich Fischer efischer@ucar.edu

Low veg. albedo vs. CTL (JJA)

Annual global land energy budget:net radiat.:+2.0 W/m²latent heat:+0.7 W/m²sensible heat:+1.3 W/m²

Changes in net radiation mainly over crop and grass (largest perturbation)

Snow albedo – snow aging

$$\alpha_{sno,\wedge} = [1 - C_{\wedge} F_{age}] \alpha_{sno,\wedge,0}$$

	Standard	Minimum	Maxiumum
fresh snow albedo (VIS)	0.95		
fresh snow albedo (NIR)	0.65		
$C_{\wedge} { m (VIS)}$	0.2	0.02	0.38
C_{\wedge} (NIR)	0.5	0.05	0.85

Snow albedo (near-infrared) – snow aging

Erich Fischer efischer@ucar.edu

Snow albedo – snow aging

Global land net radiation -0.64 W/m²

Effects strongest in spring and over Tibetan Plateau

Perturbed land parameter experiment

Roughness length $z_0(m)$: Dense evergreen needleleaf forest Dense deciduous needleaf forest Dense deciduous broadleaf forest Equatorial rainforest No. soil lev. Access. For t/piration (forest/grass) $2/1^{[43]}$	$\begin{array}{c} 0.50^{[40]} \\ 0.50^{[40]} \\ 0.50^{[40]} \\ 3/2^{[44]} \end{array}$	$\begin{array}{c} 0.78^{[41]} \\ 0.78^{[41]} \\ 0.70^{[41]} \\ 1.05^{[40]} \\ 4/3 \\ Off \end{array}$	$2.00^{[42]}$ $2.00^{[42]}$ $2.00^{[42]}$ $2.10^{[41]}$ Op [45]	2.90 ^[42]
No. soil lev. Access. For t/piration (forest/grass) 2/1 ^[43] Surface-cancopy decoupling scheme	3/2[44]	4/3 Off	On [45]	
Stomatal conductance response to ΔCO_2	$Off^{[46]}$	On		

NCAR

DJF temperatures vs. snow albedo

NCAR

Decay factor affecting water table depth

Water table depth

Latent heat flux

Roughness length

PFT	ztop [m]	z0m CLM3.5	z0m ECMWF
NET temperate	17	0.935	2
NET boreal	17	0.935	2
NDT boreal	14	0.77	2
BET tropical	35	2.625	4
BET temperate	35	2.625	4
BDT tropical	18	0.99	2
BDT temperate	20	1.1	2
BDT boreal	20	1.1	2
BES	0.5	0.06	0.1
BDS temperate	0.5	0.06	0.1
BDS boreal	0.5	0.06	0.1
C3 Grass	0.5	0.06	0.02-0.05
C3 non-arctic grass	0.5	0.06	0.02-0.05
C4 Grass	0.5	0.06	0.1
Corn	0.5	0.06	0.15
Wheat	0.5	0.06	0.15

Roughness length

Sensible heat flux

Model experiment

108 (3*3*3*2*2) simulations of 75 (15+30+30) years -> 8100 model years (approx. 10TB of data)

Tech. specs Jaguar (Cray XT5)

- 1.6 Petaflops
- 26,604 computing nodes (19'720 processors used in this experiment)
- 362 TB memory
- 10750 TB diskspace

Preliminary results

Regional DJF temperatures

DJF mean temperatures

NCAR

Regional intense precipitation (95th perc.)

Regional JJA precipitation

Range of JJA temp. response to 2xCO2

Land-atmosphere coupling (GLACE)

