Development of a Soil Depth Estimates for use in CLM

David J. Gochis Research Applications Laboratory National Center for Atmospheric Research Boulder, CO

General motivation of accounting for variations in soil depth

Global

FIG. 12. Annual evaporation and precipitation (cm yr^{-1}), averaged over all land areas, for each simulation.

- Global Hydrology: (Milly 1994, Milly and Dunne, 1994)
- Rodriguez-Iturbe and Porporato, 2004
- Bertoldi et al., 2006

The Nationa enter tor Atmospheric Research

Why variability in soil depth/soil water holding capacity may be important

Complex terrain and therefore large regions steep slope and thin soils

Why variability in soil depth/soil water holding capacity may be important

- Large regions of 'poorly developed' soils (AZ-NM, NW Mexico)
- Water limited ecosystems (as opposed to energy or other)

NAM Tower Flux Sites:

Rayon/R. Sonora, Son. (23 Jul. – 30 Sep. 2004): Complex terrain, deciduous scrub, shallow impervious layer at 0.7m (Vivoni et al, 2007, J.Climate)

Tesopaco, Son. (2004): Tropical Deciduous Forest, impervious layer at 0.45 m (Watts et al., 2007, J. Climate)

Partitioning of sensible and latent heat fluxes: Tesopaco, Sonora - 2004

- Default implementation of Noah LSM shows a positive bias in H over LE compared with obs
- Moreover Noah model is 'underdispersive' with respect to its range in LE and H flux values
- Reduction in soil depth from 2m to 0.45m results in clear broadening of flux values, particularly high LE, but no improvement in bias

NCAR

Verification of sensible and latent heat fluxes: Rayon and Tesopaco, Sonora - 2004

	H Tesopaco	LE Tesopaco
Correlations:	0.89 / 0.90	0.89 / 0.91
Nash-Sutcliff Eff.:	0.69 / 0.80	0.79 / 0.80
RMSE:	54 / 44	68 / 65

(deep soil / shallow soil)

 Equivalent or improved model performance of shallow vs. deep soil specification as indicated by a selection of quantitative metrics

Tesopaco, Son. Tower Site: Aug. 22- Sep. 2, 2004

- Differences of approx. 50 120 W/m^2 in peak flux values
- General underestimate of peak H and overestimate of peak LE during dry periods in default simulation
- Alternatively, response to precip. events modestly improved in terms of peak H reduction and peak LE amplification

Tesopaco, Son. Tower Site: 2004

- At the wetter Tesopaco site, impacts are more pronounced in response to heavier rainfall inputs
- Greater ET in shallow soil case for few days following recharge event
- Long dry-down period in late Aug. still exhibits rapid depletion of soil water
- Cross-over points in water content directly relate to relative dominance of timestep ET between shallow and deep soil models

Conclusions thus far...

- Inclusion of variable soil depths can have an appreciable impact on surface sensible and latent heat fluxes
- Impact largely appears manifested through changes in soil water holding capacity resulting in larger variations in fractional soil water content in shallow soils (*increased dynamic range*)
 - Essentially, fractional soil water content increases more rapidly during recharge events and decreases more rapidly during drydowns
 - Through model ET-soil moisture stress function, larger changes in fractional soil water content impart large influence on ET

Unresolved issues:

- Impact of bottom boundary conditions:
 - > Impermeable vs fractured bedrock
 - 'Deep' soil temperature specification (VIP for snow pack/melt, frozen soils)
 - Groundwater
- Need spatially distributed estimates of soil depth
- Influence in coupled land-atmo simulations (PBL growth, convx. init.)
- Impact of horizontal routing processes in saturated soils in complex terrain

NCAR

Inclusion of variable soil depths in LSM's

- Imperatives for LSM/coupled land-atmosphere applications
 - Distributable, 'generalizable'
 - Verifiable (at least potentially or partially)
 - Scalable (or scale-invariant?)

Estimating soil depth from DEMs (D-B)

 $\rho_s \frac{\partial h}{\partial t} = -\rho_r P_o e^{-mh} - k\rho_s \nabla^2 z$

Change in soil depth with time

Soil production function = f(soil depth)

Soil loss (diffusiontransport) function

Dietrich et al., 1995, Hyd. Proc. Heimsath et al., 1997, Science

$$h = -\frac{1}{m} \ln \left(-\frac{k \nabla^2 z}{P_o \cdot \rho_r / \rho_s} \right) = \frac{1}{m} \ln \left(\frac{\nabla^2 z_{crit}}{\nabla^2 z_z} \right)$$

Bertoldi et al., 2006, J. Hydromet.

- Diffusional, steady-state, curvature-based erosion model
- For Noah constrain soil depths from 0 200cm

NCAR

Estimating Soil Depth in the NAM Region

- Verification against tower flux sites (estimates of soil depth as well as simulated fluxes using those values)
- Basin average values of soil depth

Tower site estimation: D-B

Soil Depth Estimation

90m 'Hydrosheds' DEM

NCAR 5x5 average of nearest pixels

Estimating Soil Depth : Scale Considerations

- Derivation of soil depth from coarse DEMs does not preserve statistical structure (mean and stdev)
- Reasonable coarse resolution soil depth estimates can be derived by resampling fine-resolution estimates

NCAR

Estimating Soil Depth : Scale Considerations

Estimating Soil Depth : Scale Considerations

Estimating Soil Depth : Out on the plains...

Conclusions and Future Work:

Conclusions:

- Variations in water holding capacity impact surface fluxes through increasing the dynamic range of water content/matric potential and the ET-soil moisture stress relationship
- Spatially-distributed estimates of soil depth from DEMs appear possible using geomorphic theory (not local empirical relationships)
- Products derived at high resolution can be aggregated while generally preserving 'basin' mean values (not variances), loss of spatial covariance

 Future Work: Explore these impacts in coupled model simulations in CLM4

Acknowledgements:

- Enrique Vivoni (ASU)
- Christopher Watts (U. Sonora)
- Jon Pelletier (UA-Geosciences)
- Peter Troch and Seshadri Rajagopal (UA-HWR)
- Russ Scott (ARS-Tucson)

NOAA Climate Prediction Program for the Americas
National Science Foundation

Estimated Soil Depth in the NAM region (D-B method): River basin statistics and scaling properties

- Directly re-sampled soil depths (90 to 250 or 1000) generally preserve basin mean value although variances (std dev.) drops
- Clear increases in mean value of soil depth when derived from re-sampled (coarser) DEMs
- Peculiar behavior in 250m std deviation when derived from re-sampled DEM???
- All basins contain points minima with 0 soil depth
- Inter basin differences are modest (constrained estimates?)