The State of CEM4 (and CCSM4)

- · Change to freezing temperature constant
- forcing height at atm plus z0+d on each tile
- · Effective porosity divide by zero fix
- X. Zeng sparse/dense canopy aerodynamic parameters
- Stability formulations
- · ground/snow emissivity
- organic soil
- init h2osoi=0.3
- snow compaction fix
- snow T profile during layer splitting fix
- new FGR12 diagnostic
- snow burial fraction
- snow cover fraction
- SNICAR (snow aging, black carbon and dust deposition, vertical distribution of solar energy)
- remove SNOWAGE, no longer used
- deep soil (15 layers), including changes for bed rock
- · Koichi ground evap (beta), stability, and litter resistance
- Swenson organic/mineral soil hydraulic conductivity percolation theory
- · Zeng/Decker Richards equation modifications
- normalization of frozen fraction of soil formulation
- · Swenson one-step solution for soil moisture and qcharge
- · changes to rsub_max for drainage and decay factor for surface runoff
- back to old lakes and wetlands datasets
- changes to pft physiology file from CN
- possible changes to surface dataset due to CN?
- new grass optical properties
- new surface dataset from Peter Lawrence assuming no herbaceous understory
- direct versus diffuse radiation offline
- new VOC model (MEGAN)
- modification to solar radiation penetration through snow (no solar to soil if snowdp<0.1m)
- new RTM rdirc file and change to QCHANR definition
- snow-capped runoff goes to ice stream
- dust model always on, LAI threshold parameter change from 0.1 to 0.3
- daylength control on vcmax
- SAI and get_rad_dtime fix

LMWG progress towards CLM4

- Soil hydrology since Breckenridge 2008 (Sakaguchi, Zeng, Swenson, Oleson, Lawrence, Niu, Yang)
 - litter resistance
 - under canopy turbulent stability
 - modified Richard's equation maintains steady state
 - tuning R_{submax} and surface runoff decay factor
 - 1-step soil moisture and qcharge solution
 - Slightly improved soil moisture variability, surface fluxes, soil moisture stress, partitioning of ET into its components, deeper water table

Soil moisture variability

U_HYD-U_CON Standard Deviation, Annual Cycle Removed (1984-2004)

Soft Water

– Snow model

- snow density dependent snow cover fraction parameterization
- snow burial fraction for short vegetation
- adopt SNICAR

snow age

vertically resolved heating in snowpack (snowdp > 0.1m)

aerosol deposition (dust, black carbon, organic carbon) – works with bulk or modal aerosols

- snow compaction
- snow layer splitting

T_{air}(land): RMSE 2.78°C \rightarrow 2.56°C, Bias 0.59°C \rightarrow 0.43°C Climate sensitivity: +0.2 to +0.3°C

- Urban model

- Impact on climate is very small, represent heat island
- Heating/AC/wasteheat flux: +0.03 to 0.05 W m⁻² over land

1980-1999 Average Annual Diurnal Cycle (40.7N, 287.5E)

- Ice stream in River Transport Model

- For snow capped regions send excess water to ice stream (poor man's ice sheet calving)
- Reduces CCSM energy imbalance by ~0.15-0.2 W/m²

Reference height

Distance between reference height (z_0+d) and lowest atmospheric level is same for all land tiles

-

- Revised surface dataset
- New grass optical properties
- Organic soil physical properties
- Deeper soil column (~50 m, 15 soil levels, layers 11-15 are bedrock)
- Fixed diurnal cycle of solar radiation (offline)
- Partitioning of direct vs diffuse radiation (offline)
- New VOC model (MEGAN model)

- New surface dataset revised assumptions about how to treat herbaceous understory when assigning PFTs from MODIS
- New grass optical properties
 NIR White

Bias = 5.6,
$$RMSE = 8.9$$

Bias = 1.0, RMSE = 4.5

Land cover change impact on albedo

CLM3.5 dataset

OBS

CLM4 dataset

- Organic soil physical properties
- Deeper soil column (~50 m, 15 soil levels, layers 11-15 are bedrock)
- Fixed diurnal cycle of solar radiation (offline)
- Partitioning of direct vs diffuse solar radiation (offline)
- New VOC model (MEGAN model)

Direct vs diffuse radiation (offline)

Relationship derived from CAM3.5 hourly data

Separate relationships for visible and near infrared

Affects photosynthesis and increases consistency between online (CAM/CLM) and offlin (CLM only) simulations

- Organic soil physical properties
- Deeper soil column (~50 m, 15 soil levels, layers 11-15 are bedrock)
- Fixed diurnal cycle of solar radiation (offline)
- Partitioning of direct vs diffuse solar radiation (offline)
- New VOC model (MEGAN model)

	Latent Heat Flux		Sensible Heat Flux	
	r	RMSE (W/m²)	r	RMSE (W/m²)
CLM3	0.54	72	0.73	91
CLM3.5	0.80	50	0.79	65
CLM4	0.80	48	0.84	58

Partitioning of ET, Runoff

CCSM4

- Track 1
 - CAM3.5; updated surface components (which are chilled)
 - Running beta 1850 and present day simulations now
- Track 5
 - CAM4 with modal aerosols (aerosol indirect effect), UW PBL scheme, Morrison/Gettleman microphysics, updated macrophysics, RRTM
 - similarly updated surface components
- Release of CCSM4
 - autumn 2009???
- A Climate Modeling Primer July 27-31st, 2009 National Center for Atmospheric Research, Boulder, CO

APPLICATION DEADLINE: 1 May 2009

- Crop model / irrigation
- Land use / land cover transitions at column / landunit level
- Integration with Integrated Assessment Models
- Spatially variable soil depth
- Soil texture heterogeneity
- (Human managed water systems)
- Dynamic wetlands
- Methane emission model
- Thermokarst / shallow lakes
- Insect outbreaks
- Numerous other carbon, nitrogen, phosphorus cycling projects

Land use

Goal - Represent historical and future changes in land use (crops, pastures, cities) and their effects on energy, water, and biogeochemical fluxes

Albani et al. (2006) Global Change Biology 12:2370-2390 Hurtt et al. (2006) Global Change Biology 12:1208-1229 Challenges:

The CN approach is a starting point, but does not provide a framework to include cities or managed systems (crops, pastures) as ecosystems separate from natural ecosystems. It does not recognize specific land cover transitions.

Need a community framework: Johan Feddema (Kansas), George Hurtt (UNH), Natalie Mahowald (Cornell), Jim Randerson (UC-Irvine)

Diagnostics (T, P, albedo, runoff)

TSA	modified	control	Comparison
Model	cam3_5_45sci21a	cam3_5_45cona	Summary
RMSE	2.59	2.74	-0.15
RMSE % Area	21.84	10.67	+11.17
ANN Bias	0.09	0.50	-0.41
ANN Bias % Area	24.06	9.38	+14.68
DJF Bias	-0.38	0.41	-0.79
DJF Bias % Area	14.48	11.89	+2.59
MAM Bias	0.03	0.61	-0.58
MAM Bias % Area	24.75	9.88	+14.87
JJA Bias	0.54	0.37	+0.17
JJA Bias % Area	18.97	25.19	-6.22
SON Bias	0.04	0.43	-0.39
SON Bias % Area	12.79	9.17	+3.62

