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Data assimilation techniques applied 
to multiple, spatially distributed 
ecological measurements



Luo et al. 2003
Xu et al. 2006
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Levenburg-Marquardt minimization with quasi-
Monte Carlo algorithm (White and Luo 2002)

MCMC Metropolis-Hastings algorithms (Xu et 
al. 2006)

Genetic algorithms (Zhou and Luo 2008)

Ensemble Kalman Filter (Gao et al. in revision)

Techniques



Deconvolution of soil respiration (Luo et al. 2001)
CO2 effects on carbon residence times (Luo et al. 2003)
Uncertainty analysis of residence times (Xu et al. 2006; 

Zhou et al. in revision)
Propagation of measurement errors (Weng et al. in review)
Ecological forecasting (Gao et al. in revision)
Information contents of model structure, data, and 

parameters (Weng et al. to be submitted)
Regional carbon residence times and sequestration (Zhou 

and Luo 2008; Zhou et al. in revision)
Global distributions of Q10 (Zhou et al. 2009)

Applications
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Data assimilation with spatially 

distributed ecological measurements 
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Regional Terrestrial Ecosystem (TECO) Model

22 parameters to describe carbon 
dynamics in ecosystems
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Data sets: NPP in leaves, stems, and roots, biomass in leaves, 

stems, fine litter, and roots and SOC in the three soil layers.
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Biome types

 ENF – Evergreen needleleaf forest
 DBF – Deciduous broadleaf forest
 MF   – Mixed forest
 W    – Woodland
 WG – Wooded grassland
 S     – Shrubland
 G     – Grassland
 C     – Cropland 
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Parameter estimation - weighed least 
squares principle 

Cost function

a is a vector of 22 parameters 

xn is an auxiliary forcing vector 
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Optimized values of 22 parameters for eight biomes
with mean ±one standard deviation of optimized values from 30 runs of 
genetic algorithm 

Zhou and Luo 2008 GBC
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Stochastic inversion: Bayesian approach

Probability density function

Observed Data

Prior knowledge Posterior information

p(c) p(Z|c) p(c|Z)
Model
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Ecosystem carbon 
residence time

High in cold and 
forest regions

Low in agricultural 
areas

Uncertainty

High uncertainty in 
southwest, south, and 
southeast is probably 
due to low data density 
in those regions

Zhou et al. In revision
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Ecosystem carbon 
sequestration

High in southeast forests 
and central croplands

Low or negative in 
southwest regions

Uncertainty

high in east forest 
ecosystems due to 
high uncertainty in 
residence times and 
low data density.

Zhou et al. In revision
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Sensitivity analysis of the estimated C residence times in 
nonsteady state. Estimated C residence times increase as the magnitude of carbon 
uptake varied from 10 to 50% of the total NPP

Legacy effects

Zhou and Luo 2008 GBC
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Global pattern of Q10 and its implications
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Parameter and inversion algorithm 
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Relationship between optimal global mean Q10 value and upper 
limit of domain Q 

Zhou et al. 2009 JGR-Biogeosciences
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Spatial pattern of the optimal Q10 values. In general, tundra, 
C3 and C4 grasslands, shrublands, and croplands have higher Q10 values 
than deserts, bare grounds, broadleaf deciduous forests, and woodlands. 

Zhou et al. 2009 JGR-Biogeosciences
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(a)(b)

a b

Relationship between the departure of annual soil 
respiration and annual mean temperature

Zhou et al. 2009 JGR-Biogeosciences
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Summary
 We have developed techniques to pool spatially distributed 

ecological data to constrain regional and global models

 Ecosystem C residence time ranged from 16 in croplands to 86 
years in evergreen forests with an average of 57 years. Large 
uncertainty appeared in the southern and eastern USA

 The estimated C sequestration was 0.20 Pg C yr-1 with the 
largest portion in the evergreen forests, grasslands, and 
croplands with large uncertainty in the central and eastern USA. 

 Almost all of parameters are constrained to different degrees

 Spatially distributed Q10 can help improve model predictions 
of carbon cycles
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www.newphytologist.org

23rd New Phytologist Symposium

Carbon cycling in 
tropical ecosystems

Yanling Hotel, Guangzhou, China
17–20 November 2009

Organisation
Ian Alexander University of Aberdeen, UK

Yiqi Luo University of Oklahoma, USA
Juxiu Liu South China Botanical Garden, China

Rich Norby Oak Ridge National Laboratory, USA
Xuli Tang South China Botanical Garden, China
Yan Yu South China Botanical Garden, China

Guoyi Zhou South China Botanical Garden, China
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ENF - Evergreen needleleaf forest

DBF - Deciduous broadleaf forest

MF - Mixed forest

W – Woodland

WG - Wooded grassland

S – Shrubland

G – Grassland

C - Cropland 
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NO. Land cover type Number
of grids

Area
(km2) Q10

MAT
(℃)

MAP
(mm y-1)

1 Broadleaf evergreen forest 1093 1.34E+07 1.50 25.0 2201 

2 Broadleaf deciduous forest and woodland 318 3.28E+06 1.75 16.6 961 

3 Mixed forest and woodland 763 6.55E+06 1.61 9.2 934 

4 Coniferous forest and woodland 2000 1.29E+07 1.69 -2.1 547 

5 High latitude deciduous forest and woodland 952 5.75E+06 1.61 -5.7 442 

6 Wooded C4 grassland 1456 1.71E+07 1.59 23.1 1324 

7 C4 grassland 779 8.93E+06 2.02 23.8 580 

9 Shrubs 1034 1.10E+07 1.82 17.6 266 

10 Tundra 1507 7.00E+06 2.03 -10.4 335 

11 Desert, bare ground 1598 1.68E+07 1.43 20.6 96 

12 Cultivation 1368 1.33E+07 2.01 14.7 832 

14 C3 wooded grassland 440 4.46E+06 1.66 14.6 1145 

15 C3 grassland 1235 1.14E+07 1.96 7.3 423 

All Global average 14543 1.32E+08 1.72 13.7 789 

Area-weighted mean values of Q10, mean annual temperature (MAT), and mean 
annual precipitation (MAP) 
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Means and 
uncertainty 
(SD) of 
estimated 
parameters

Biomes
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