Land Use in the iPETS Integrated Assessment Model: Progress Report

Brian O'Neill,¹ Sukwon Choi,¹ and Michael Dalton²

¹ National Center for Atmospheric Research (NCAR)
² National Oceanic and Atmospheric Administration (NOAA), Seattle, WA

Joint CLM/BGC Workshop, NCAR 31 March 2009

iPETS: 9-Region CGE Model, with Trade

iPETS: Global, regionally disaggregated IA Model (Integrated Population-Economy-Technology-Science Model)

Collaborators: O'Neill (NCAR); Dalton (NOAA); Jain (U. Illinois); Jiang (PAI); Fuchs/Gmeiner/Pachauri/Zigova (IIASA)

Global CO2 Emissions Scenarios (Energy Only)

Sector Disaggregation in iPETS

Other

Crops Animal products Forestry

Coal

Evergy Ga

Gas Electricity Petroleum products Manufacturing

Services

 \rightarrow \rightarrow

 \rightarrow

Cropland Pasture Mngd. Forest

Data for base year: GTAP 6.0

\$ of input/output by industry Hectares of land by industry

Land Use Modeling Framework

Agro-Ecological Zones (AEZ)

- AEZ defined primarily by Length of Growing Period (LGP)
- LGP = number of days annually with temperatures above 5°C when moisture conditions are considered adequate
- LGP a function of
 - Climate conditions (temperature, precipitation)
 - Soil conditions and properties
 - Ecosystem processes

Land Use Modeling

Percent of grid cell in crop production, A2r scenario IIASA model

Total Land Use by Region, Sector (IIASA A2r, RCP8.5)

iPETS downscaling model: Three principles

- 1. Satisfy demand at regional level
- 2. Maximize revenues at the grid cell level
- 3. Economic tradeoffs between different uses of land within each grid cell are efficient, and are informed by current land use data

Grid cell-level land use decisions

Within each grid cell (k) in a given region:

$$M_{S_{i}} R_{k} = \sum_{i=1}^{I} P_{i}^{S} S_{ik} \quad \text{s.t.} \quad H(S_{1k}, \dots, S_{Ik}) = 0$$

maximize revenues by choosing land (S) for three different sectors (i) stay on the Production Possibility Frontier (PPF)

Across all grid cells in a given region:

$$\sum_{k \in AEZ(j)} S_{ik}^{*}(P_{i}^{*S}) = S_{ij}(P_{i}^{y}, P_{j}^{S}, y_{i}) \quad \forall i, AEZ(j)$$

sum of land used in each = t sector across all cells = s

total land used in each sector at regional level

Production Possibility Frontiers (PPFs)

Economically efficient combinations of production of animal products (using pasture) and crops (using cropland).

PPFs calibrated to gridded land use data

PPFs calibrated to gridded land use data

Next Steps

- Test downscaling model for one region
 - using historical gridded land use data
 - using IIASA regional land use scenario
- Issues:
 - calibrating to cells with zero(s) for current land use
 - representing changing technology (moving PPFs)
- Production of global results
- Link to iPETS
- CLM?

Production data: IO Tables

PET Features: A Few Details

- Economic growth and technological change
 - KLEM production structure can incorporate different patterns of technical change across industries and regions

$$F(a_{K}(t) K, a_{L}(t) L, a_{E}(t) E, a_{M}(t) M)$$

- Solving the model
 - Forward looking (perfect foresight)
 - Households maximize utility (Stone-Geary)
 - Producers maximize profits (nested CES production)
 - Market clearing condition