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Site-level model-measurement
synthesis: Objectives

Starting at the spatial scale of individual sites,
establish quantitative framework that allows
NACP investigators to answer the guestion:

—  “Are the various measurement and modeling
estimates of carbon fluxes consistent with each
other - and if not, why?”

Improve quantification of uncertainty for
forward models and site-based measurements.

ldentify strengths and weaknesses in models
and measurements.

Migrate new knowledge up-scale in
coordination with regional and continental-
scale efforts.



Approach

Anchor the comparison at flux measurement
sites
— Multiple years of energy, water and carbon fluxes
— Ancillary physical and biological measurements
(“template” exists, encourage site Pls to fill it in)
Introduce additional data sources as available.

Measurement teams produce their own best
estimates of fluxes and flux uncertainty at each
site.

Modeling teams produce their own best
estimates of fluxes and flux uncertainty at each
site for each model.

Evaluate overlap (or lack thereof) In
confidence intervals to answer main science
guestion: are the measurements and model
predictions different?



Current Status

¢ Sites
— 36 first-priority sites
— 11 second-priority sites (chronoseguences)
— 11 third-priority sites (incomplete ancillary data)
o First-priority sites: representation by veg type:
— CRO(5), GRA(4), DBF(7), ENFB(4), ENFT(6), MF(3),
WSA(1), SHR(1), TUN(2), WET(3)
 ~25 models have contributed results.

— CLM4 simulations are running now, using latest code
tag within modified ModelFarm.



Flux Tower Sites



Flux measurement uncertainties

e Must consider both random and systematic uncertainties

e Systematic: here, consider effect of processing
algorithms (other sources: advection, possibly energy
balance closure, etc.)

— Evaluate by comparing processing methods (e.g., u* threshold,
gap filling algorithm, NEE/GPP/RE partitioning algorithm)

— Gap filling uncertainty: across an ensemble of methods, +30g C
m-2 y-1 (95% Cl, based on reanalysis of Moffat et al. 2007
results) at annual time step; + 15% at half hourly time step

— Flux partitioning: across an ensemble of methods, £ 10% for
annual GPP, £ 15% for annual RE (95% Cl, based on reanalysis of
Desai et al. 2008 results); at half-hourly time step, algorithmic
uncertainty is (approximately) a similar percentage of the
estimated flux



Random uncertainties

Main source: turbulence sampling errors

Evaluate using statistical analyses of measured
fluxes (e.g., two tower, paired difference,
model residual approaches; see Richardson et
al. 2006, 2008)

Non-Gaussian (Laplace distribution), standard
deviation of uncertainty increases with flux
magnitude (=20% during day; *50% during
night)

Half-hourly uncertainties propagate to gap
filled values, too. Random errors DO NOT
“cancel out”: integrated uncertainty IS
SIGNIFICANT at annual time step

Integrated over year: £10-40 g C m2 y?!, at 95%
confidence (depends on site characteristics,
flux magnitude, and extent and timing of gaps)
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Random Uncertainty (95% CI) in Measured Annual

Net Ecosystem Production vs. Ecosystem Respiration
(following Richardson et al. 2008, NACP synthesis sites, FCRN gap-filling)
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Multi-model comparison: diurnal cycle
(Howland)
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Multi-model comparison: diurnal cycle
(Howland, with model 95%Cl)
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GPP (umolm™ ™)

Multi-model comparison: diurnal cycle
(Howland growing season mean)
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Multi-model comparison: seasonal cycle
(Howland, NEE)
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Multi-model comparison: seasonal cycle
(Howland, GPP)
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Multi-model comparison: seasonal cycle
(Howland, Re)
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Conclusions

We’'re about 50% of the way to a
publishable analysis

Building a valuable data and analysis
resource for the broader community

Highlighting many data and model quality
Issues along the way

Better understanding of measurement
uncertainty than model uncertainty



Conclusions (cont’d)

* Multi-model ensemble provides a useful
way to analyze the structural component
of model uncertainty

 Next steps:
— Introduce disturbance history

— Finalize measurement uncertainty analysis
— Model parameterization uncertainty



Three more LAMP pieces...

« NCEAS FACE analysis: model-measurement
iIntercomparison at ORNL and Duke FACE sites.
— Detailed model parameterizations to represent site
conditions and experimental protocol.
« N labeling experiments: Nadelhoffer et al., Zak
et al., Stark et al. experiments. Recent review of
experimental results by Schlessinger (2009).

— Help trace the fate of N through plant, litter, and SOM
pools

» Post/Matthews/Holland litter chemistry and

decomposition database; Enriched Background

Isotope Study (EBIS).
— Evaluate organic carbon fluxes from litter sources to

mineral-soll sinks. Should lead to improved model
structure/parameterization.
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Interaction effect of +CO, and disturbance on GPP:
(with and without N-limitation)
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Comparison to 1°N tracer experiments:

Model captures the observed
behavior: most new N ends up in
litter and soil organic matter,
smaller fraction in vegetation
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EBIS plot and mesocosm experiments
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