Multi-physics Options; model sensitivity and parameters interaction

Zong-Liang Yang

Guo-Yue Niu and Enrique Rosero

liang@mail.utexas.edu The University of Texas at Austin

Niu, G.-Y., Yang Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longnevergne, L., Manning, K., Tewari, M., Xia, Y.-L., et al., (2009) The Community Noah LSM with Multi-Physics Options. *J. Geophys. Res.*, Submitted.

Rosero, E., Yang Z.-L., Wagener T., Gulden L.E., Yathendradas S., Niu G.-Y. (2009) Quantifying Parameter Sensitivity, Interactions and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones. *J. Geophys. Res.* Under Review.

Manuscripts available at http://www.geo.utexas.edu/climate

CCSM Land Model Working Group and Biogeochemistry Working Group Meetings, 30 March 2009

Development of a LSM with multi-physics options

Background:

- 1) Soil moisture and ET and their relationship are critical for land-atmosphere interactions at seasonal and inter-annual scales,
- 2) No single LSM can adequately simulate the soil moisture–ET relationship, but the multi-model average performs better.

Objectives:

- 1) To facilitate physically-based ensemble climate predictions,
- 2) To identify optimal combinations of parameterization schemes, and
- 3) To identify critical processes controlling the coupling strength between the land surface and the atmosphere

Niu, G.-Y., Yang Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longnevergne, L., Manning, K., Tewari, M., Xia, Y.-L., et al., (2009) The Community Noah LSM with Multi-Physics Options. *J. Geophys. Res.* Submitted.

New Features Added to the Noah LSM:

- 1. Major components: 1-layer canopy; 3-layer snow; 4-layer soil
- 2. Subgrid scheme: semi-tiled vegetation and bare soil (Niu et al., 2009)
- 3. Modified two-stream radiation transfer scheme to consider the 3-D structure of the canopy (Niu and Yang, 2004).
- 4. More realistic snow physics (Yang and Niu, 2003) and a snow interception model (Niu and Yang, 2004).
- 5. A TOPMODEL-based runoff scheme (Niu et al., 2005).
- 6. An unconfined aquifer interacting with soil (Niu et al., 2007).
- 7. More permeable frozen soil (Niu and Yang, 2006).
- 8. Ball-Berry stomatal resistance related to photosynthesis (Bonan, 1996)
- 9. A short-term leaf phonology model (Dickinson et al., 1998).

Optional Schemes

- 1. Leaf dynamics (prescribed or predicted)
- 2. Turbulent transfer (Chen et al., 1997; general M-O)
- 3. Soil moisture factor for stomatal resistance (Noah; CLM; SSiB)
- 4. Canopy stomatal resistance (Jarvis; Ball-Berry).
- 5. Snow surface albedo (BATS; CLASS).
- 6. Frozen soil permeability (Koren et al., 1999; Niu et al., 2006).
- 7. Supercooled liquid water content (Koren et al., 1999; Niu et al., 2006).
- 8. Radiation transfer:

Modified two-stream: Gap = F (3D structure; solar angle ...)

Two-stream applied to the entire grid cell: Gap = 0.

Two-stream applied to fractional vegetated area: Gap = 1-GVF (like CLM).

- 9. Partitioning of precipitation to snowfall and rainfall (CLM; Noah).
- 10. Runoff and groundwater:

TOPMODEL with groundwater

TOPMODEL with an equilibrium water table (Chen and Kumar, 2001) Original Noah scheme (Schaake et al., 1996)

BATS surface runoff and free drainage

Total # of combinations: 5184 models

Transitional Experiments

	$\theta_{lia\max i}$	Frozen soil	C _H	Runoff	r.	Leaf
		permeability			3	Dynamics
Noah V3	Koren99	Koren99	Chen97	Schaake96	Jarvis	Off
EXP 1	Koren99	Koren99	Chen97	Schaake96	Jarvis	Off
EXP 2	NY06	NY06	Chen97	Schaake96	Jarvis	Off
EXP 3	NY06	NY06	M-O	Schaake96	Jarvis	Off
EXP 4	NY06	NY06	M-O	SIMGM	Jarvis	Off
EXP 5	NY06	NY06	M-O	SIMGM	Ball-Berry	Off
EXP 6	NY06	NY06	M-O	SIMGM	Ball-Berry	On

Table 1. Experiments with different combinations of schemes

36 Ensemble Experiments

	Exp.	Dynamic vegetation	rs	β	Runoff schemes	- -
Ī	EN1				SIMGM	*
	EN2			Noah	SIMTOP	-
	EN3				Schaake96	-
	EN4				BATS	
	EN5				SIMGM	
	EN6	On	Ball-Berry	CLM	SIMTOP	
	EN7				Schaake96	
	EN8	Off	Ball-Berry		BATS	
	EN9	Off	Jarvis		SIMGM	
	EN10			SSiB	SIMTOP	in represe
	EN11				Schaake96	processe
	EN12				BATS	

Table 3. The first group of 12 experiments and their corresponding options of schemes.

ertainty enting S

36 Ensemble Experiments

- Runoff scheme is shown as the dominant player in the SM-ET relationship: SIMTOP (bottom sealed; green) produces the wettest soil and greatest ET; BATS (greatest surface runoff: grey) produces the driest soil and smallest ET.
- 2. Runoff scheme plays as a provider of soil water (besides precipitation) while surface schemes plays as a "consumer" of soil water.

36 Ensemble Experiments

The mean (M) of the 36member ensemble simulations out performs the simulation from any single combination of parameterization schemes.

Quantifying Parameter Sensitivity, Interactions and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

- We perform two Monte Carlo based sensitivity analyses to answer:
 - What are the most important model parameters (for STD, GW and DV) across the region?
 - What are the dominant interactions between model parameters, and how do these change between models?
 - How do behavioral parameters change with dominant physical characteristics of the land?

Rosero, E., Yang Z.-L., Wagener T., Gulden L.E., Yathendradas S., Niu G.-Y. (2009) Quantifying Parameter Sensitivity, Interactions and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones. *J. Geophys. Res.* Under Review.

Sobol first-order sensitivity of LE

The regional pattern is consistent with physical expectations Very few parameters directly control model output

10

Interactions are the dominant mode of sensitivity. GW shows less interaction than STD or DV

Behavioral sensitive parameters at site 7

Optimal value of 'physically meaningful' parameter changes between models.

> Local sensitivity (ΔRMSE/Δpar) changes too.

Therefore, the relationships between parameters must change between models.

Multivariate posterior distribution of behavioral parameters at site 7

The relationships between the parameters change between models. GW functions in two modes: GW-like (m1) and STD-like (m2) Interactions make the relationships more important than optimal values

Classification of posterior distribution of behavioral parameters at all sites

Vegetation (soil) parameters are less similar between sites with the same vegetation (soil) type than they are between neighboring sites. Clusters of soil and vegetation parameters resemble the climatic gradient

Summary and Conclusions:

- Only a few parameters directly control the variance of H, LE and SMC
- Most parameters exert most of their influence through interactions
- Interactions are model dependent. They shape the relationship between parameters to the point of altering optimal values of parameters between models
- Similar parameter distributions cannot be classified solely on the basis of soil or vegetation type. The similarity shows strong correlation with climate.