

Curt Covey, Aiguo Dai, Richard S. Lindzen and Dan Marsh

CCSM WACCM Working Group Meeting, NCAR, March 6, 2009

Motivation

- Regular pressure tides near the surface provide a test bed for evaluating model physics related to diurnal heating within the atmosphere and at the surface.
- Surface pressure tides in GCMs have been analyzed for a few models, but not for WACCM and most IPCC AR4 models.
- The inter-comparison between WACCM and regular GCMs provides an assessment of the effect of upper atmosphere (>30km) on surface pressure tides.

The Role of Upper Atmosphere

- Classical tidal theory predicts that ozone heating explains ~2/3 of the Ps semidiurnal tide (S2);
- Since most GCMs have a top at 30-40km, below the peak ozone heating (~50km), one might expect these models to have a weak S2;
- However, this analysis and earlier analyses show that this is not the case!
- Then what are the possible explanations?

Model and Obs. Data

- 3-hourly surface pressure (Ps) from WACCM-1 and WACCM-3 for Jan. 1991
- 3-hourly see level pressure (SLP) from IPCC AR4 models
- 3-hourly Ps from ship and station obs. (1976-1997) (Dai and Wang'99)

TABLE 1: Tides Near "Batavia" (now Jakarta): 14°S-2°N, 97.5°E-112.5°E

Source			Diurnal component		Semidiurnal component	
	Model Top	Str.Levs	Ampl. [mbar]	Tmax [LST]	Ampl. [mbar]	Tmax [LST]
CNRM-CM3	0.05 mb	20	0.7165	4:35	1.4010	9:35
CNRM-CM3 AMIP			0.7601	4:42	1.3762	9:38
GFDL-CM2.0	3.00 mb	4	0.4402	6:16	1.3455	10:22
GFDL-CM2.1	3.00 mb	4	0.6095	5:46	1.3112	10:39
GISS-EH	0.10 mb	10	0.7039	4:15	1.7625	10:35
GISS-ER	0.10 mb	10	0.9469	4:19	1.8195	10:33
GISS-ER AMIP			0.7762	4:54	1.7533	10:09
INM-CM3.0	10.00 mb	7	0.6513	5:08	1.4486	10:04
INM-CM3.0 AMIP			0.7378	3:47	1.4763	10:03
MIROC3.2(hi-res)	40 km ≈ 3 mb	22	0.4043	6:16	1.4801	10:09
MIROC3.2(hi-res) AMIP			0.5774	6:31	1.4452	10:11
MIROC3.2(med-res)	30 km ≈ 10 mb	6	0.6403	6:60	1.7809	10:54
MIROC3.2(med-res)AMIP			0.6238	7:34	1.6323	10:52
MRI-CGCM3.2	0.40 mb	7	0.5923	5:46	1.9330	11:14
MRI-CGCM3.2 AMIP			0.4899	5:38	1.7558	10:57
WACCM-1 Jan climat PS	3× 10 -6 mb	51	0.5205	5:17	1.2520	10:48
WACCM-1 Jan climat PSL			0.5491	5:12	1.2599	10:48
WACCM-1 Jul climat PS			0.5709	3:15	1.1361	10:48
WACCM-1 Jul climat PSL			0.5945	3:17	1.1428	10:47
WACCM-3 Jan climat PS	3×10-6mb	51	0.5474	4:34	1.3474	9:53
OBSERVATIONS			0.6491	5:59	0.9984	9:56

NCAR

Amplitude of Diurnal Tide S1

Amplitude of Semi-diurnal Tide S2 Obs.

Time of Maximum of Diurnal Tide S1

Time of Maximum of Semi-diurnal Tide S2

Zonal Wave Components of Diurnal Tide S1

n

Zonal Wave Components of Semi-diurnal Tide S2

NCAR

Summary

• WACCM-1 and -3 produce similar S1 and S2 that are comparable to obs., with the migrating component being too strong, especially for S2.

• The similar CAM2 (with a top at ~40km) produces S1 and S2 only slightly weaker than WACCM.

• Both WACCM and CAM2 failed to produce the large S1 observed over the Rockies and Tibetan Plateau.

 Other GCMs with tops below 40km also produced S1 and S2 broadly comparable to obs.