WACCM and WACCM/CARMA studies at CU LASP: March 2009 Update

Michael Mills, Cora Randall, Brian Toon, Lynn Harvey, Xiaohua Fang, Bodil Karlsson, Matthias Brakebusch, Susanne Benze, Jeff France, Donavan Wheeler, Laura Holt, Jason English, Eric Wolf

LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS UNIVERSITY OF COLORADO AT BOULDER Charles Bardeen, Dan Marsh, Rolando Garcia, Doug Kinnison, Aimee Merkel, Simone Tilmes, Francis Vitt

CU LASP's WACCM Activities Spanning the atmosphere

WACCM, CAM & CARMA at LASP

Talk outline:

- WACCM
 - compared to meteorological data
 - Polar vortex dynamics & sudden stratospheric warmings
 - Cold air outbreaks
 - compared to satellite data
 - SABER & MLS: Stratopause T & Z
 - MLS O₃, N₂O, H₂O & T
 - Energetic particle precipitation
 - Parameterized PMCs
 - Interhemispheric coupling

- WACCM/CARMA
 - Sulfate nucleation
 - PMCs, meteoritic dust
 - Mesospheric sulfate

Additional ongoing Toon group studies:

- WACCM/CARMA
 - Early Earth hazes
- CAM/CARMA
 - Tropospheric dust
 - Sea salt
 - Titan
 - Mars
 - Subvisible cirrus

WACCM compared to meteorological data

Polar vortex dynamics & sudden stratospheric warmings (L. Harvey) Cold-air outbreaks (D.Wheeler) Zonal Mean Vortex and Anticyclone Frequencies

WACCM Simulation of Strat Warming is Reasonable

Courtesy of L. Harvey

10 hPa Strat Warming Diagnostics

Minor Warmings

WACCM3 15 years, MetO 1991-2008, GEOS-5 2004-08

WACCM simulates fewer major and minor warmings than the analyses, except in April (final warming).

Courtesy of L. Harvey

WACCM and ERA-40 Cold-Air Outbreaks

ERA-40 Surface Temperature

Courtesy of D. Wheeler

WACCM 1000 hPa Temperature

(# of Points)/(# of Longitude Points)

Cold-Air Outbreak Climatology

0.000 0.003 0.005 0.008 0.011 0.014 0.016 0.019 0.022 0.024 0.027 (# of Points)/(# of Longitude Points) per 30 years

Courtesy of D. Wheeler

WACCM compared to satellite data

SABER & MLS: Stratopause T & Z (J. France, L. Holt) MLS O₃, N₂O, H₂O & T (M. Brakebusch, S. Benze)

WACCM, GEOS, SABER, and MLS Stratopause Temperature and Height

Courtesy of J. France and L. Holt

Latitude-Time Stratopause Temperature from 2005-2008

Courtesy of J. France

WACCM stratopause is warmer inside the vortex, cooler outside.

SD-WACCM vs. MLS $O_3 \& N_2O$ Color contours: O_3 Black contours: N₂O (SD-WACCM - MLS) O₃ inside NH vortex 05/06 700 \leq 650 potential temperature mixing 600 ratio 550 [pptv] (line 500 contours 450 400 Oct Nov Dec Feb Mar Jan -0.3 0.0 0.3 0.6 0.9 1.2 1.5 ∆O₃ volume mixing ratio [ppmv] Courtesy of M. Brakebusch

SD-WACCM vs. MLS: H₂O

SD-WACCM vs. MLS: Temperature

Energetic particle precipitation

- Ionization: $N_2 \rightarrow NO_x$
- Auroral electrons
 1 30 kev
- Add medium-energy electrons (MEE)
 – 30 kev - 2.5 Mev

Figure from Fang et al., JGR, 2008.

NO_x descent with mediumenergy electron precipitation

Courtesy of C. Randall

Medium-energy electrons induce O₃ depletion

Courtesy of C. Randall

Parameterized Polar Mesospheric Clouds in WACCM

Interhemispheric coupling in WACCM (B. Karlsson)

WACCM/CARMA

Sulfate nucleation at the tropopause (J. English) PMCs with dust nuclei (C. Bardeen) Mesospheric sulfate as PMC nuclei (M. Mills) Early Earth haze (E. Wolf)

Sulfate nucleation schemes

Courtesy of J. English

>4nm particle mixing Ratio (#/mg)

Binary homogeneous nucleation

calculation (Zhao) compared to

Meteoritic Dust as PMC Nuclei

Dust concentrations highly sensitive to gravity wave tuning.

Courtesy of C. Bardeen

WACCM/CARMA PMC statistics compared to SOFIE observations

Courtesy of C. Bardeen

Summary

	SOFIE v1.01		WACCM/CARMA	
Events	1432		1432	
Clouds	1130	78.9%	959	66.9%
Zmax < 79 km	88	6.2%	0	0.00%

Seasonal Mean

	Units	SOFIE	WACCM	Difference
Height	km	83.53	83.26	-0.27 km
Base	km	80.16	80.78	0.62 km
Тор	km	87.01	87.69	0.68 km
Thickness	km	6.85	6.92	0.96%
Column IWC	ug m⁻²	36.65	30.32	-17.26%
B(3.064)	km⁻¹	4.36E-05	4.54E-05	4.18%
Re	nm	35.68	42.43	18.91%
Mass	ng m⁻³	13.45	13.68	1.69%
Number	cm⁻³	406.68	75.95	-81.33%
Water Vapor	ppmv	4.35	4.90	12.53%

WACCM4/CARMA

- Better WACCM integration
 - Supports Open/MP and Hybrid Modes
 - Handles Restarts Properly
 - Integrated with Radiation Code (RRTMG)
- New Version of CARMA
 - Fortran 90
 - Thread Safe
 - Globally Adjusted Kernels & Coefficients
 - Improved Substepping (No Crashing)

Courtesy of C. Bardeen

WACCM, CAM & CARMA at LASP

Talk outline:

- WACCM
 - compared to meteorological data
 - Polar vortex dynamics & sudden stratospheric warmings
 - Cold air outbreaks
 - compared to satellite data
 - SABER & MLS: Stratopause T & Z
 - MLS O₃, N₂O, H₂O & T
 - Energetic particle precipitation
 - Parameterized PMCs
 - Interhemispheric coupling

- WACCM/CARMA
 - Sulfate nucleation
 - PMCs, meteoritic dust
 - Mesospheric sulfate

Additional ongoing Toon group studies:

- WACCM/CARMA
 - Early Earth hazes
- CAM/CARMA
 - Tropospheric dust
 - Sea salt
 - Titan
 - Mars
 - Subvisible cirrus

Modeling Early Earth Organic Hazes Using WACCM/CARMA

Eric Wolf University of Colorado

A Titan-like organic haze layer covered the young Earth.

<u>RESULTS:</u>

Thicker hazes will cause antigreenhouse cooling.

• UV shielding minimal

FUTURE QUESTIONS:

• How will fractal particles alter haze properties?

•How do organic hazes affect solutions to the Faint Young Sun problem? Particle size distributions for early Earth organic hazes at various altitudes derived from WACCM/CARMA.

UV and VIS absorption optical depths for Early Earth hazes for various production rates.

Haze production rate (g yr ⁻¹)	10 ¹²	10 ¹³	10 ¹⁴	10 ¹⁵
$ au_{ m uv}$	0.026	0.112	0.47	2.31
$\tau_{ m vis}$	0.005	0.04	0.249	1.63
τ_{uv}/τ_{vis}	4.79	2.78	1.89	1.42

Zonal Mean Vortex and Anticyclone Frequencies

WACCM

Polar vortex (red) and anticyclone (blue) zonal mean frequency.

NH winter anticyclone in WACCM too weak.

<u>NH vortex</u> too strong.

SH winter anticyclone in WACCM too strong in stratosphere and too weak in mesosphere.

<u>SH vortex</u> too weak in stratosphere and too strong in mesosphere.

Courtesy of L. Harvey

Randall *et al.* (AGU 2007): On average, auroral precipitation causes >10% increases in NO_x down to ~35 km in SH

WACCM3 NOx, MEE level 0, Lat 78S

Courtesy of Cora Randall

CARMA Microphysical Model

Courtesy of Chuck Bardeen

Reduced Dust At Summer Mesopause

Bardeen et al. (JGR, 2008)

Polar Mesopause Temperatures

WACCM vs. Lubken [1999], 70°N

Courtesy of Chuck Bardeen

How Does WACCM/CARMA Compare To SOFIE on AIM?

Summary

	SOFIE		WACCM/CARMA	
Events	1423		1423	
Clouds	1134	79.69%	1010	70.98%
Zmax < 79 km	289	20.31%	0	0.00%

Source: TOMS (NASA) via Mark Jacobson, Atmospheric Pollution

Effective radius (μm)

March Zonal Average