

CAM standalone development simulations

Cécile Hannay, Rich Neale, Andrew Gettelman, Sungsu Park, Joe Tribbia, Peter Lauritzen, Andrew Conley, Hugh Morrison, Phil Rasch, Steve Ghan, Xiaohong Liu, and many others

Thanks to: Mat Rothstein, and John Truesdale

AMWG Meeting, Boulder, February 10-12, 2010

Outline

- The evolution of CAM
- Status of the model at the last AWMG meeting
- **Development** since the last AWMG meeting
- AMIP simulations
- Conclusions

CAM Evolution

Release	2004	2007	April 2010	June 2010
Model	CAM3 (L26)	CAM3.5 (L26)	CAM4/Track1 (L26)	CAM5/Track5 (L30)
Boundary Layer	Holtslag and Boville (93)	Holtslag and Boville	Holtslag and Boville	UW <i>Diagnostic TKE</i> Bretherton et al. (09)
Shallow Convection	Hack (94)	Hack	Hack	UW <i>TKE/CIN</i> Park et al. (09)
Deep Convection	Zhang and McFarlane (95)	Zhang and McFarlane Neale et al.(08), Richter and Rasch (08) mods.	Zhang and McFarlane Neale et al., Richter and Rasch mods.	Zhang and McFarlane Neale et al., Richter and Rasch mods.
Stratiform Cloud	Rasch and Kristjansson (98) <i>Single Moment</i>	Rasch and K. Single Moment	Rasch and K. Single Moment	Morrison and Gettelman (08) <i>Double Moment</i> Park Macrophysics Park et al. (10)
Radiation	CAMRT (01)	CAMRT	CAMRT	RRTMG lacono et al. (2008)
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM	Modal Aerosol Model (MAM) Ghan et al. (2010)
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume	Finite Volume

Courtesy: Rich Neale

Development status at Breckenridge

- CAM4 (Track 1) : Frozen model
- > CAM5 (Track 5) : Still in development

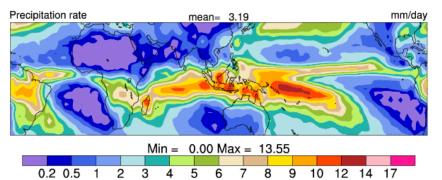
standalone simulation: competitive with CAM4 (Track 1)

coupled simulation: worse than CAM4 (Track 1)

- too low clear-sky OLR and LWCF
- sea-ice too thin
- excessive precipitation over tropical land => affects river run-off
- aerosol indirect effect: ~1.5 W/m2
- no big volcanoes eruption

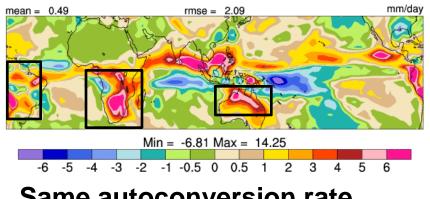
Since Breckenridge

• CAM5 (Track 5): 200 CAM standalone experiments

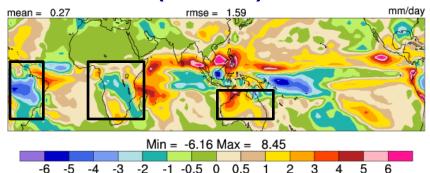

Some highlights of the accomplishments

- Improved parameterization of autoconversion
- Improved ice microphysics
- Turned on turbulent mountain stress parameterization
- Included the effect of big volcanoes
- Improved low cloud over the Arctic
- 4th-order divergence damping
 - + Laplacian near model top
- New emission datasets for aerosols

- Convective precipitation is controlled by the autoconversion rate (~ process of coalescence that leads to the formation of new rain drops)
- Precipitation formation is easier over ocean than land (over land: more CCN => smaller droplet => less rain)
- Improved parameterization
 Autoconversion efficiency: c0(ocn) > c0(Ind)


Tropical precipitation, DJF

CMAP


New parameterization of autoconversion reduces the excessive land precipitation

CAM5 (Track 5) - CMAP

Same autoconversion rate over land and ocean

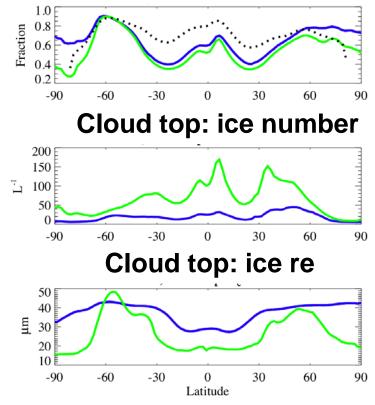
CAM5 (Track 5) - CMAP

Autoconversion rate weaker over land

Improvement of the ice microphysics

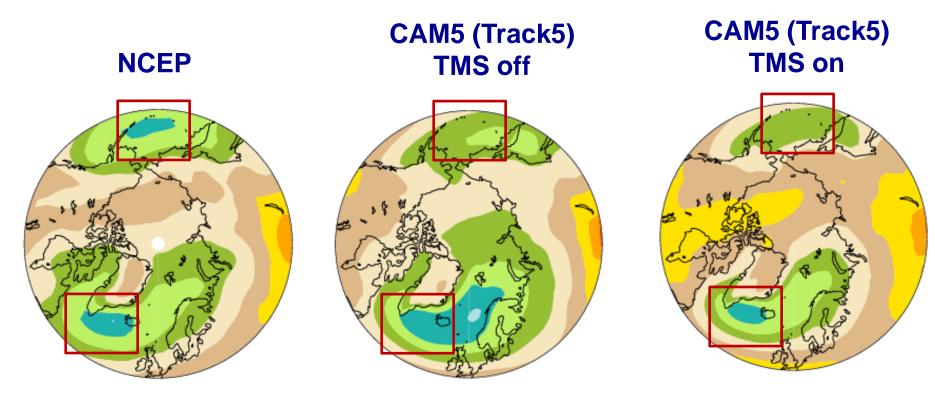
Features

- Reduces the nucleation of ice crystal
- Freezes supercooled rain at -5C


Impact

- Better ice size and concentration
- Increases high cloud fraction
- Improve the spring sea-ice

See: Gettelman et al (2010)

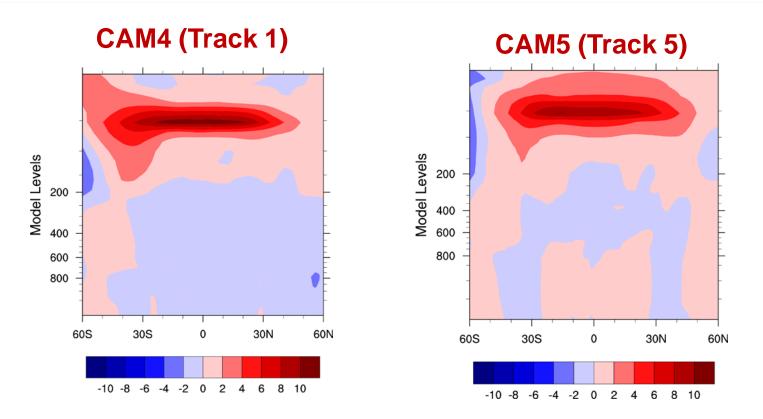

- High Ice nucleation
- Reduced ice nucleation

Total cloud fraction

Courtesy: Andrew Gettelman

Turned on the Turbulent Mountain Stress (TMS) parameterization (~ take into account mountain roughness)

MEAN= 1012.58 Min= 1002.91 Max= 1023.11 991 997 1003 1009 1015 1021 1027 1033


TMS improves the sea-level pressure

Includes big volcanoes impact

Use prescribed volcanic aerosol mixing ratio

June 1991 : Eruption of the volcano Pinatubo

- warms stratosphere by 3 K (absorbs upwelling LW)
- cools troposphere by a few 0.1 K (reflects SW)

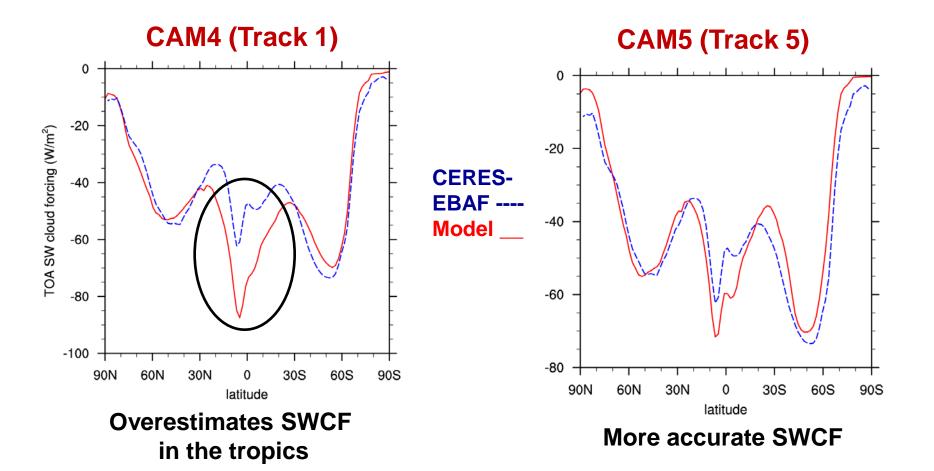
Simulations

Model versions

- CAM4 (Track 1)
- CAM5 (Track 5)

Run settings

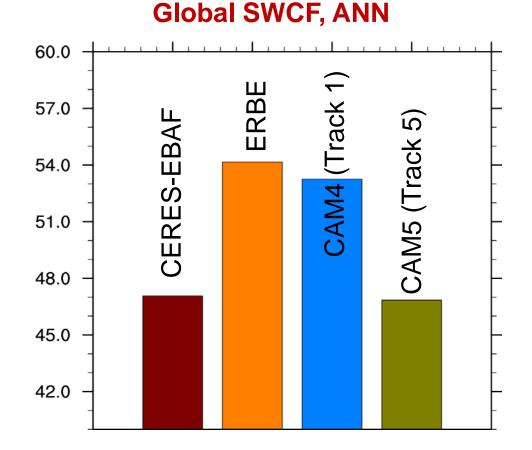
- AMIP runs with observed SSTs
- Horizontal resolution: finite volume 1.9x2.5 degrees
- Vertical resolution: CAM4 (Track 1): 26 levels CAM5 (Track 5): 30 levels

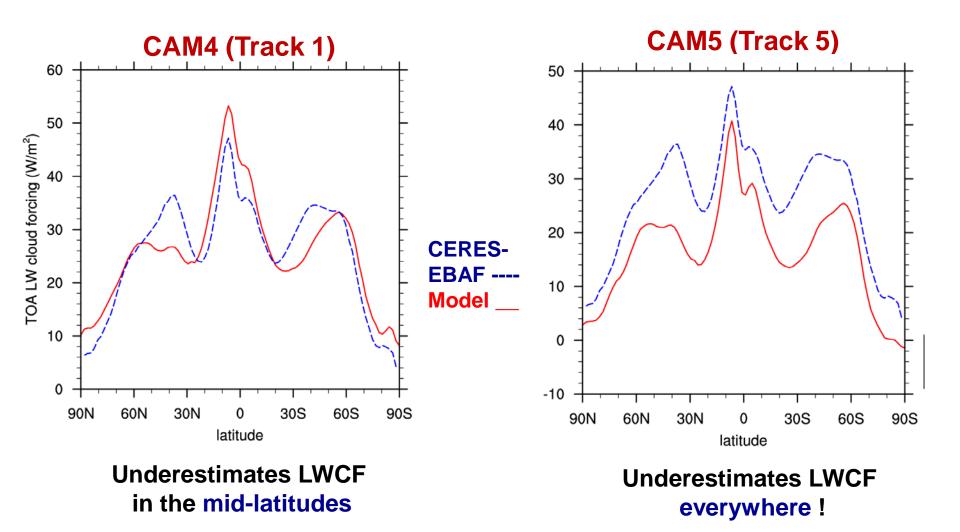

Comparison with observations

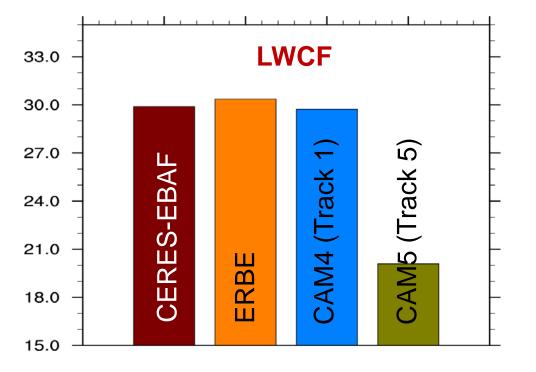
• 25-years climos (1978-2002)

Shortwave cloud forcing (SWCF), ANN

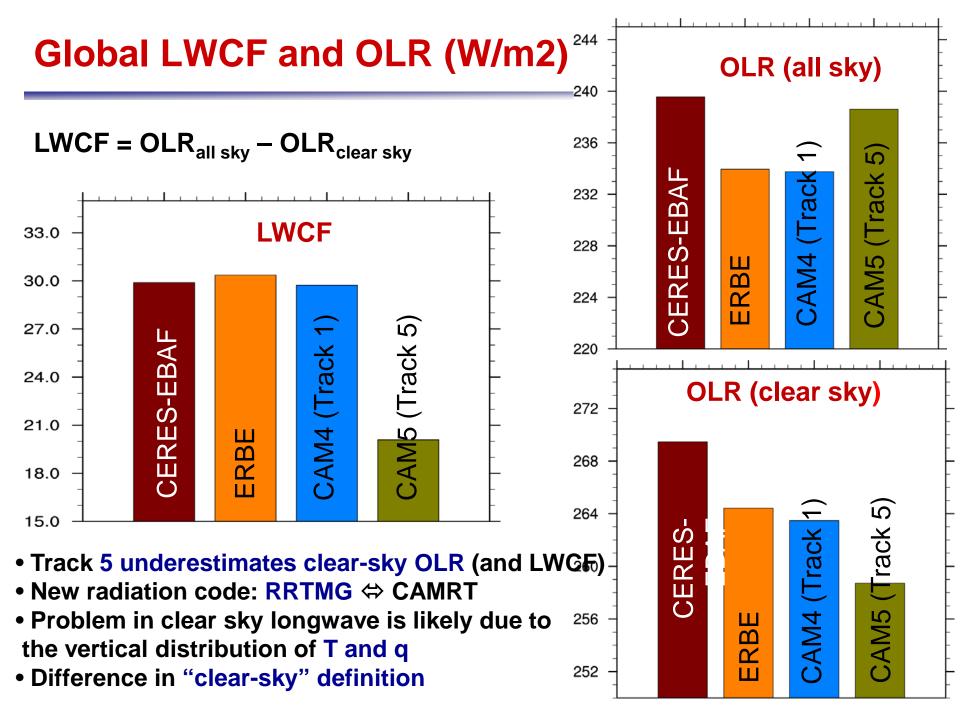
SWCF = Net SW_{all sky} - Net SW_{clear sky}


Observations: CERES-EBAF (Energy Balanced And Filled)

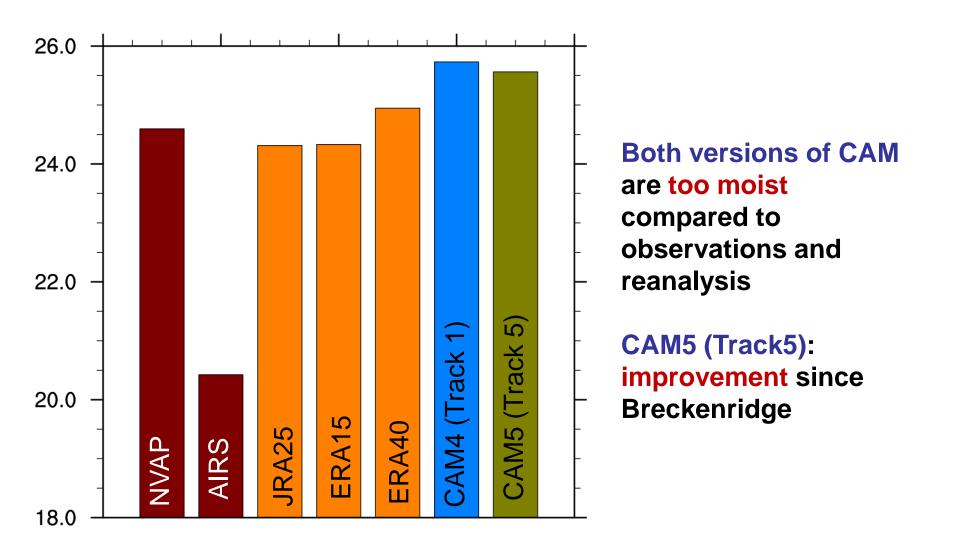

SWCF: CERES-EBAF versus ERBE


Impact of the observation dataset

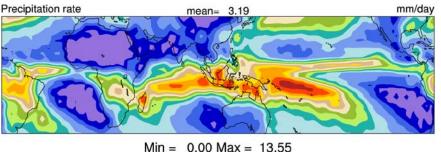
- CAM3 <=> ERBE
- CAM4 and beyond <=> CERES-EBAF



Longwave cloud forcing (LWCF), ANN



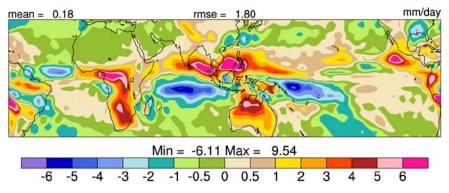
Track5 underestimates global LWCF by 10 W/m2 !



Precipitable water: global annual means

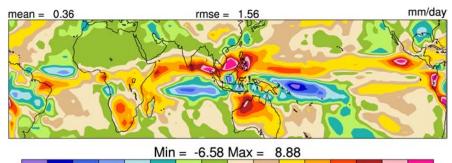
Tropical precipitation: DJF

CMAP



Min = 0.00 Max = 13.55													
0.2 0.5	1	2	3	4	5	6	7	8	9	10	12	14	17

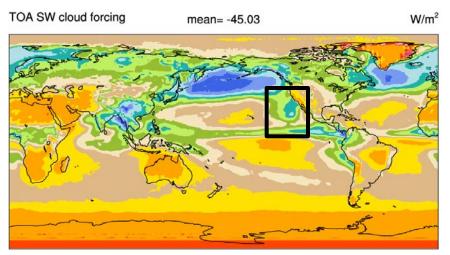
Over ocean:


- same precipitation pattern in
- CAM4 (Track 1) and CAM5 (Track 5)
- same deep convection scheme

CAM4 (Track 1) - CMAP

excessive land precipitation

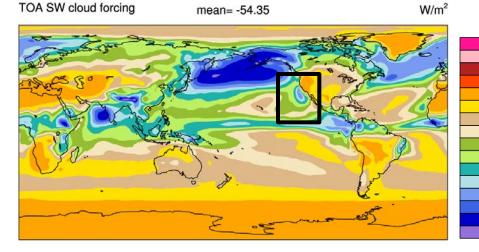
CAM5 (Track 5) - CMAP


-1 -0.5 0 0.5

-2

improved land precipitation (land autoconversion efficiency)

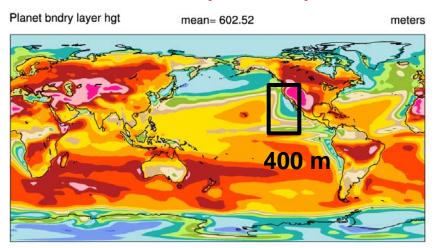
SWCF in stratocumulus decks: JJA


CERES-EBAF

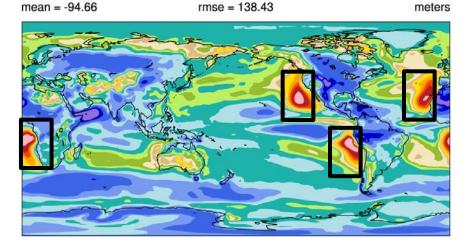
• Improved SWCF in stratocumulus regions

• Due to the new PBL scheme

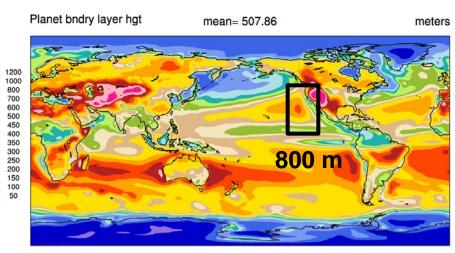
CAM4 (Track 1)



CAM5 (Track 5)



PBL height: JJA


CAM4 (Track 1)

CAM5 (Track 5) - CAM4 (Track 1)

CAM5 (Track 5)

• Improved PBL height in stratocumulus regions

• Entrainment of dry air at the top of the cloud => increase PBL height

Taylor diagrams

ANN: SPACE-TIME condense information Reference Grids Used 0.0 0.1 0.2 about variance and 0.3 **RMSE** of a particular RMSE Bias Bias 1.50 5 1.000 1.000 model run when $\nabla \Delta$ >20% 0.891 1.183 Deviations (Normalized) $\nabla \Delta$ 10-20% 6 1.013 1.147 compared with Correlation Δ ∇ 5-10% Δ Δ 1-5% 1.25 observations 0 0 <1% 0,8 1.00 **RMSE Bias** ړ<mark>گ</mark>≙ cam3 5 fv1.9x2.5 0.9 **CAM3.5** 1.00 1.00 0.75 f40 amip t5 02b Standardized f40_amip_t1_01 8 0.95 CAM4 1.01 1.15 9 0 0 0.50 0 - Sea Level Pressure (ERA40) 8 1 - SW Cloud Forcing (CERES2) (Track1) 2 - LW Cloud Forcing (CERES2) 3 - Land Rainfall (30N-30S, GPCP) 0 4 - Ocean Rainfall (30N-30S, GPCP) 7 ____ 0.89 1.18 CAM5 0.99 0.25 5 - Land 2-m Temperature (Willmott) 6 - Pacific Surface Stress (5N-5S,ERS) (Track5) 7 - Zonal Wind (300mb, ERA40) 8 - Relative Humidity (ÉRA40) 9 - Temperature (ERA40) 0.00 1.0 0.25 0.50 0.75 REF 1.25 1.50

Correlation: Space-Time

	CAM3.5	CAM5 (Track 5)	CAM4 (Track 1)
oor ooof: Space Time	cam3_5_fv1.9x2.5	f40_amip_t5_02b	f40_amip_t1_01
cor coef: Space-Time	ANN	ANN	ANN
Sea Level Pressure (ERA40)	0.949	0.967	0.953
SW Cloud Forcing (CERES2)	0.707	0.726	0.706
LW Cloud Forcing (CERES2)	0.820	0.832	0.799
Land Rainfall (30N-30S, GPCP)	0.785	0.832	0.775
Ocean Rainfall (30N-30S, GPCP)	0.802	0.831	0.793
Land 2-m Temperature (Willmott)	0.876	0.874	0.873
Pacific Surface Stress (5N-5S,ERS)	0.872	0.896	0.875
Zonal Wind (300mb, ERA40)	0.967	0.974	0.967
Relative Humidity (ERA40)	0.900	0.924	0.895
Temperature (ERA40)	0.912	0.933	0.918

Green means better Red means worse

CAM4 (Track 1): Frozen model

CAM5 (Track 5): Improvements include

- Improved ice microphysics => better ice # and Re
- autoconversion = f(Ind, ocn) => better land precip
- Turned on turbulent mountain stress => better SLP
- Included the effect of big volcanoes

Conclusions (2): 25-year AMIP simulations

CAM4 (Track 1)

- overestimates SWCF in the tropics
- underestimates LWCF in mid-latitude
- excessive precipitation over land
- poor representation of stratocumulus deck

CAM5 (Track 5)

- better overall score than CAM4 (Track 1)
- better SWCF in the tropics
- worse clear sky OLR and LWCF
- better tropical land precipitation
- improved stratocumulus deck (and PBL height)

Conclusions (3): what's next ?

In CAM5 (Track 5)

- improve precipitation
- clear sky OLR and LWCF
- indirect effect