

Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section

Cécile Hannay, Dave Williamson, Rich Neale, Jerry Olson, Dennis Shea

National Center for Atmospheric Research, Boulder

AMWG Meeting, Boulder, February 10-12, 2010

Observations along the cross-section

Methodology for the forecasts

Forecast

Evaluation

AIRS, ISCCP, TRMM, GPCP, SSMI, CloudSat, Flash-Flux, ECWMF analyzes

Strategy

If the atmosphere is initialized realistically, the error comes from the parameterizations deficiencies.

Advantages

- Evaluate the forecast against observations on a particular day and location

- Evaluate the nature of moist processes parameterization errors before longer-time scale feedbacks develop.

Limitations

Accuracy of the atmospheric state ?

Ensemble mean forecast and timeseries forecast

3 versions of CAM

CAM3	Release 2004
CAM4 "track1"	Release April 2010 New physics: - Deep convection (Neale and Richter, 2008)
CAM5 "track5"	Release June 2010 New Physics: - Cloud microphysics (Morrison, Gettelman) - Radiative Transfer (Iacono, Collins, Conley) - PBL and Shallow convection (Bretherton and Park) - Macrophysics (Park, Bretherton, Rasch) - Aerosol formulation (Ghan, Liu, Easter) - Ice clouds (Gettelman, Liu, Park, Mitchell)

Highlights of the results

- Climate bias appears very quickly
 - where deep convection is active, error is set within 1 day
 - 5-day errors are comparable to the mean climate errors
- CAM3
 - ITCZ: warm/wet bias of the upper troposphere too much precipitation and high level cloud
 - StCu: cloud too close to the coast and PBL too shallow
- CAM4/Track 1
 - ITCZ: CAM4 reduces warm/wet bias of the upper troposphere dramatic improvement of precipitation ... but too little high-level cloud compared to observations
- CAM5/Track 5
 - ITCZ: same improvements as with CAM4
 - StCu better PBL height and low-level cloud fraction

... but underestimates high-level cloud and LWP

Precipitation: Monthly means, June 2008

- CAM3: overestimates the precipitation in the ITCZ
- CAM4/5: reduction in the ITCZ precipitation at day 1 precipitation intensity increases later in the forecast

Precipitation timeseries, JJA 2008

Correlation with TRMM

At the ITCZ:

Mixing parcel⇔ env

Allows mixing

- CAM3: overestimates the precipitation in the ITCZ No mixing rains all the time
- CAM4/5: reduction in the ITCZ precipitation better correlation with observed precipitation underestimates strong events

Precipitation timeseries, JJA 2008

Correlation with TRMM

CAM4/5: precipitation better connected to mid-troposphere

Precipitation timeseries, JJA 2008

Correlation with TRMM

CAM4/5: correlation w/obs decreases in 5-day forecast

Moisture profile in the stratocumulus regime

Dry and surface-driven PBL scheme

scheme based on prognostic TKE w/ explicit entrainment at top of PBL

Water vapor budget in the stratocumulus regime

Conclusion

• CAM forecasts allows for diagnosing parameterization errors in different cloud regimes

• CAM3

- too much precipitation near ITCZ (deep convection scheme: no mixing between the parcel and its environment)

- PBL too shallow in StCu (dry and surface-driven PBL scheme)

• CAM4

- dramatic improvement of precipitation in the early forecast with the new convection scheme (entrainment of environment)

• CAM5

- new PBL scheme produces deeper and better mixed PBLs (PBL scheme: prognostic TKE with explicit entrainment at top of PBL)