Lawrence Livermore National Laboratory

The LLNL Climate UQ Project

Brief Overview and Preliminary Results

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Climate UQ Teams

- UQ Project Lead
 - Richard Klein (LLNL, U.C. Berkeley)
- Climate Team
 - Curt Covey (climate lead)
 - Donald Lucas (modeling and analysis)
 - John Tannahill (software architecture and development)
 - Yuying Zhang (observations and analysis)
 - Others (Peter Gleckler, Steve Klein)
- UQ and Computation Teams
 - David Domyancic, Scott Brandon (LLNL UQ Pipeline)
 - Gardar Johannesson (curse of dimensionality, design of experiments)
 - Carol Woodward, Jeff Hittinger (numerical errors, adjoints)
 - Others (Charles Tong, ...)

Climate Model UQ Goals

Phase One

- 12-year CAM + AMIP runs (ver 3.6.73, phys 3.5.1, 1.9 x 2.5)
- Exploratory sensitivity and uncertainty studies
 - Start with 21 uncertain target parameters (top hat parameter PDFs)
 - Rank order parameters (most-to-least influential)
 - Characterize linear versus non-linear/interaction responses
- Variable selection, dimensional reduction (DR) and adaptive sampling refinement (ASR)

Phase Two

- Parameter calibration ensemble
 - Use ASR to target important regions of parameter space for ensemble runs
 - Use observational data to constrain uncertain parameters: traditional reanalysis datasets, passive sensor cloud data (ISCCP, MODIS), active sensor cloud data (CloudSat, CALIPSO)

Phase Three

- UQ runs using CAM (calibrated) + SlabOcean (CCSM)
- 2 x CO2 runs
- Quantify climate sensitivity PDF and determine confidence bounds on the PDF

CAM/UQ study logistics

- CAM particulars:
 - CAM version 3.6.73, with a few local modifications
 - 2 degree, AMIP, cam3_5_1 physics, run for 12 simulated years
 - 21 input parameters of interest explored
 - 192 tasks/run X 2 cpu's per task = 384 cpu's/run
- atlas platform:
 - 1072 batch nodes X 8 cpu's/node = 8,576 batch cpu's
- Typical CAM/UQ study particulars:
 - 11 concurrent CAM runs X 384 cpu's/run = 4,224 cpu's for CAM
 - 4,224 cpu's for CAM + 1 UQ Pipeline node = 4,232 cpu's total
 - 16 hour job length
- MOAT1 study throughput:
 - 220 runs took ~9.5 days
 - Code was executing ~60% of that time

Climate Model Uncertainty Quantification

Climate Model UQ Studies

Group	Model(s)	# params	# runs	Types of runs	Ref.
QUMP	HadAM+SM	29	53 (2 x 26 + 1)	AMIP + 1,2 x CO2 OAT	Murphy et al (2004)
CPN	HadAM+SM	10	multi-10 ³ (~3 ¹⁰)	AMIP + 1,2 x CO2	Piani et al (2005); Knutti et al (2006)
CPN	HadCM	74	>50,000 (but << 3 ⁷⁴)	Same as QUMP below	Frame et al (2009)
QUMP	HadAM+SM +CM+RCM + CMIP3/IPCC	31 + extra	280 + 17 + 16	AMIP + 1,2 x CO2 +coupled ocn + biogeochem	UK Climate Projections (summer 2009, papers to follow)
UT Austin	CAM3.1	6	518	2-yr AMIP + 1,2 x CO2	Jackson et al. (2008)
Sanderson	CAM3.1	4	81	AMIP + 1,2 x CO2	Sanderson CCSM Workshop 2009
LLNL	CAM3.6.73	21	~500 and counting	12-yr AMIP OAT+MOAT (next: LHS + 1,2 x CO2)	Work began Oct. 2009

21 Parameters in Initial UQ Studies

	Variable Name	Description	Nmlist Prefix	File Name	Source*
1	rhminh	Minimum RH for high stable cloud formation	cldfrc_	cloud_fraction.F90	J
2	rhminl	Minimum RH for low stable cloud formation	cldfrc_	cloud_fraction.F90	J+S
3	rliqice	Liquid drop size over sea ice	cldopt_	pkg_cldoptics.F90	R
4	rliqland	Liquid drop size over land	cldopt_	pkg_cldoptics.F90	R
5	rliqocean	Liquid drop size over ocean	cldopt_	pkg_cldoptics.F90	R
6	ice_stokes_fac	Ice Stokes factor scaling fall speed	cldsed_	pkg_cld_sedimnent.F90	S
7	capnc	Cloud particle # dens. over cold land/ocean	cldwat_	cldwat.F90	R
8	capnsi	Cloud particle # dens. over sea ice	cldwat_	cldwat.F90	R
9	capnw	Cloud particle # dens. over warm land	cldwat_	cldwat.F90	R
10	conke	Stratiform precip. evaporation efficiency	cldwat_	cldwat.F90	J
11	icritc	Threshold for cold ice autoconversion	cldwat_	cldwat.F90	S
12	icritw	Threshold for warm ice autoconversion	cldwat_	cldwat.F90	S
13	r3lcrit	Crit. radius where liq. conversion begins	cldwat_	cldwat.F90	R
14	ricr	Critical Richardson # for boundary layer	hbdiff_	hb_diff.F90	K/B
15	c0/shallow	Shallow convec. precip. efficiency parameter	hkconv_	hk_conv.F90	J
16	cmftau	Time scale for consump. rate of shallow CAPE	hkconv_	hk_conv.F90	K/B
17	alfa	Initial cloud downdraft mass flux	zmconv_	zm_conv.F90	J
18	c0/deep	Deep convec. precip. efficiency parameter	zmconv_	zm_conv.F90	J
19	dmpdz	Parcel fractional mass entrainment rate	zmconv_	zm_conv.F90	S
20	ke	Environmental air entrainment rate	zmconv_	zm_conv.F90	J
21	tau	Time scale for consump. rate of deep CAPE	zmconv_	zm_conv.F90	J

* J = Jackson et al. (2008) J Clim 21: 6698; R = P. Rasch (2009) suggestion; S = Sanderson (2009) talk at CCSM Workshop; SK = S. Klein + D. Bader (2009) suggestion

Lawrence Livermore National Laboratory

Traditional One-At-a-Time (OAT)

- Easy to implement
- Low computational cost Order ~ 2N_p + 1 43 CAM runs
- Misses corner regions (i.e. neglects joint effects)

In 21 Dimensions

- Over 2 million corners (2^N)
- Fraction ≈ 6.7 × 10⁻⁹

Sample Output From Initial OAT Run

Nonlinear Responses Detected With OAT

Morris One-At-a-Time (MOAT)

- Suggested by M. D. Morris (ORNL) in *Technometrics* (1991)
- Multi-path One-At-a-Time

Sample along multiple paths and build up statistics of sensitivities throughout parameter space

- Easy to implement
- Relatively low computational cost
 - $N_{\rm runs} = M \left(N_{\rm p} + 1 \right)$

M = number of MOAT paths (usually 10-20)

220 to 440 CAM runs

• **Screen** and **rank** important parameters with linear or non-linear effects

Morris One-At-a-Time (MOAT)

path	run	P ₁	p ₂	
1	1	1/3	0 `	A A
1	2	1	0 <	4 _{1,1}
1	3	1	2/3	d _{1,2}
2	4	2/3	1/3	> d
2	5	0	1/3 <	2,1
2	6	0	1 ,	2,2 a
3	7	0	2/3	> d
3	8	2/3	2/3 <	3,1
3	9	2/3	0 /	3,2

 $\mu_1^* = (|\mathbf{d}_{1,1}| + |\mathbf{d}_{2,1}| + |\mathbf{d}_{3,1}|)/3$

 $\mathbf{d}_{i,j} = \frac{\Delta \text{ output}}{\Delta \text{ input}} \quad (\text{path } i, \text{ parameter } j)$ $\mu_i^* = \mathbf{avg}(|\mathbf{d}_{i,j}|), \sigma_j = \mathbf{stddev}(\mathbf{d}_{i,j})$

OAT vs MOAT

The sensitivity of global annual average FLUT to changes in 21 parameters

- OAT study suggests that FLUT is not sensitive to zmconv_dmpdz and hkconv_cmftau
- MOAT study indicates that these are important parameters!

Lawrence Livermore National Laboratory

MOAT Parameter Screening Plots

MOAT Parameter Legend

- Initial MOAT screening plots (e.g. sensitivity of FLUT to the 21 parameters)
- Are there distinct parameter clusters? (dimensional reduction)
- Is the rank order robust for different time-space averages?

Responses For Different MOAT Paths

Maps of \triangle FLUT for the same \triangle zmconv_tau, but at different points in the parameter space

The response of FLUT differs in magnitude and sign!

MOAT Sensitivity Maps

Each sensitivity map is constructed from 20 runs (2 runs per MOAT path)
Responses vary in space and time and are nonlinear (stddev)

MOAT Rank Order

Next Steps

- Near term
 - Additional MOAT runs to assess 'convergence'
 - Preliminary decomposition of variance (i.e. uncertainty)

 $V(Y) = (V_1 + V_2 + \dots) + (V_{12} + V_{13} + \dots) + (V_{123} + \dots) + \dots$

- Test robustness using an alternate method
- Apply dimensional reduction, develop adaptive sampling refinement
- Mid-term
 - Assemble and apply observational database
 - Define model-observation metrics
 - Constrain model parameters using *smart* ensemble
- Long term
 - 2xCO2 and formal UQ on climate sensitivity