Satellite Remote Sensing of Liquid Water in Cold Clouds for CAM Validation

David L. Mitchell

Desert Research Institute, Reno, Nevada

Robert P. d'Entremont

Atmospheric and Environmental Research, Inc., Lexington, MA

Figure 3. PDF of ice mass fraction as a function of temperature for the ICE case (black filled contours). Model output is from 1000–100hPa and 90°S–90°N. In situ observations from *Field et al.* [2005] shown for ice (diamond) and liquid (asterisk) dominated conditions. Contours are logarithmic, 3 per decade (1,2,5).

From Korolev et al. 2003, QJRMS

MIXED-PHASE FRONTAL CLOUDS

Figure 14. Comparison of fraction of ice, mixed- and liquid-clouds from the present and previous studies. Note that the left-hand and right-hand y-axes are in opposing senses. Lines labelled 1 and 2 should be referred to the left-hand axis and all other curves to the right-hand axis.

Basis for Mixed Phase Cloud Retrieval

1. Use the 12/11 μ m absorption optical depth ratio, β , to estimate the %LW.

2. β is quasi-constant for all-ice clouds but increases with a growing presence of a liquid phase.

3. The mean LW fraction can be estimated from the mean departure of β from its ice threshold value.

Maximum Estimate of β_{eff} vs. Cloud Temperature From Giraud et al., 1997 J. Applied Meteorology

0.63 0.86 11.02 um Color composite 1900 UTC 05 Aug 07

Cirrus-only over-ocean pixels

Procedure:

1. Use tropical anvil PSD scheme for ice portion & a representative mean diameter & dispersion param. for liquid portion of PSD.

2. Increase LW in droplet PSD until observed and predicted β_{eff} match. - Account for changes in n_r/n_i

Evaluate Uncertainties:

- 1. Mean droplet size
- 2. Mean ice particle size
- 3. m-D power laws for ice
- 4. Dispersion param. for ice PSD

%LW is sensitive to mean droplet size, but range of **β** restricts the possibilities.

Dispersion of β at warmer temperatures appears similar to frequency distribution of cloud ice fraction from Korolev et al. (2003, QJRMS)

From Korolev et al. 2003, QJRMS.

Figure 3. PDF of ice mass fraction as a function of temperature for the ICE case (black filled contours). Model output is from 1000–100hPa and 90°S–90°N. In situ observations from *Field et al.* [2005] shown for ice (diamond) and liquid (asterisk) dominated conditions. Contours are logarithmic, 3 per decade (1,2,5).

22 July Case Study Results

5 August Case Study Results

Sensitivity of $D_{\rm e}$ to % Liquid Water

Summary

- 1. The 12/11 μ m absorption optical depth ratio (β) exhibits quasi-constant behavior for ice clouds but is sensitive to the presence of a liquid phase, making it a possible metric for estimating the liquid water fraction for LW < 50%.
- 2. The increase in β can be interpreted using a microphysics/optical property algorithm that attributes liquid water to the small mode of a bimodal PSD.
- 3. The retrieval of %LW is sensitive to the mean droplet diameter, but the dispersion of β might help define this value.
- 4. Retrieval algorithm was tested on 2 case studies filtered to select single-layer cirrus clouds. For -35 °C < T < 20 °C, LW levels up to 14% were detected which greatly affect the overall D_e and optical properties.
- 5. Variability of LW fraction appears consistent with aircraft measurements and CAM4 predictions.

- 22

Calculation of ϵ_{eff} in Retrieval Algorithm - Based on Parol et al. (1991, JAM) -

Since some scattering may occur, ε retrieved in this way is an effective emissivity, ε_{eff} , which implicitly includes the effects of scattering through its dependence on asymmetry parameter g:

$$\epsilon_{eff}(12 \ \mu m) = 1 - [1 - \epsilon_{eff}(11 \ \mu m)]^{\beta_{eff}}$$

$$\beta_{eff} = Q_{abs,eff(12 \ \mu m)} / Q_{abs,eff(11 \ \mu m)}$$

$$Q_{abs,eff} = Q_{abs} (1 - \omega_o g)/(1 - \omega_o)$$

When g = > 1, all scattering is completely forward scattering and radiation is not redistributed.

Wavelength dependence of tunneling

