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Onset of  tropical deep convection: background

• Convective quasi-equilibrium (QE) assumptions for convective 

parameterizations: Above onset threshold, convection/precip. 

increase keeps system close to onset  Arakawa & Schubert 1974; Betts & Miller 

1986; Moorthi & Suarez 1992; Randall & Pan 1993; Zhang & McFarlane 1995; Emanuel 

1993; Emanuel et al 1994; Bretherton et al.  2004; …

• Need to better characterize the transition to deep convection as a 

function of buoyancy-related fields – temperature T & moisture 

(here column water vapor w)

• Useful guidance – properties of continuous phase transition with 

critical phenomena* (Peters & Neelin 2006, Nature Physics); mesoscale

implications (Peters, Neelin & Nesbitt 2009,  JAS)



1. CAM 3.5 at 0.5° qualitatively captures onset of deep convection 

(from microwave retrievals) in Temp- column water vapor 

plane (WRF too?). Plume models suggest obs onset a constraint 

on entrainment.

• Background: CWV a useful variable for characterizing onset 

of convection (sharp pickup at critical value; large datasets)

2. Precip space, time autocorrelation<<water vapor potentially 

consistent with stochastic plumes but  try to retain power law 

autocorrelations?

3. Characteristic CWV distribution above critical more variable in 

models than obs---real?.  Hypothesized mechanism implies long 

tails in other tropospheric tracers--- confirmed.

• Background: CWV distribution: Gaussian core below critical 

but exponential tail above. High precip rates freq >> Gaussian.

Summary(preview)



Precip. dependence on tropospheric temperature & 
column water vapor from TMI*

•Averages 

conditioned on 

vert. avg. temp. 

T, as well as w 
(T 200-1000mb from 

ERA40 reanalysis)

•Power law fits 

above critical:

P(w)=a(w-wc)
b

wc changes, 

same b

•[note more data 

points at 270, 271]

^

*TMI: Tropical Rainfall Measuring Mission Microwave Imager (Hilburn and Wentz 2008),  

20N-20S
Neelin, Peters & Hales, 2009, JAS 

E. Pacific



Collapsed statistics for observed precipitation

• Precip. mean & variance dependence on w normalized by 

critical value wc (for 4 T values) 

• occurrence probability for precipitating points
Neelin, Peters, Lin, Holloway & Hales,  Phil Trans. Roy. Soc. A, 2008 

Rescaled column water vapor w/wc



Critical point dependence on temperature

• Find critical water vapor wc for each vert. avg. temp. T 

• Compare to vert. int. saturation vapor value binned by same T

• Not e.g., a constant fraction of column saturation

• lower tropospheric saturation qsat(T) binning gives same results

^

^

Neelin, Peters & Hales, 2009, JAS



•<P> averages 

conditioned on 

lower trop. layer 

qsat(T), &water 

vapor

•coarse-grained to 

24km grid

•so far Jan 1997, 

1hr av P, each 3hr

• T dependence ~as 

expected; small 

curvature above 

critical

WRF W. Pac (4 km run) preliminary comparison*:
Precip. dependence on lower tropospheric

temperature (qsat) & water vapor

*analysis Hsiao-ming Hsu

lower trop. int. water vapor (mm)

lower trop. 
qsat(T)

P




CAM3.5 * preliminary comparison:

Quasi equilibrium mass flux closure: Zhang - McFarlane 

(1995) scheme modified with entraining plumes, convective 

momentum transport (Neale et al. 2008)

Mass flux Mb  entraining CAPE**, A, due to large-scale 

forcing,  F

Mb = A /(t c F) (for Mb > 0)

*Community Atmosphere Model 3.5:  0.5 degree short term climate 

projection experiment (Gent et al. 2009, Clim. Dyn.)

** Convective available potential energy



•Averages 

conditioned on 

vert. avg. temp. 

T, as well as 

column water 

vapor w 

•Linear fits 

above critical 

(motivated by 

parameterizn)

P(w)=a(w-wc)
b

as obs. but b=1 : 

to estimate wc

E. Pac.

CAM3.5 (0.5 degree run) preliminary comparison*:
Precip. dependence on tropospheric temperature & 

column water vapor

*Runs, data R. Neale, analysis K. Hales



Critical point dependence on temperature
CAM3.5 preliminary comparison

• critical water vapor wc for each vert. avg. temp. T

• Compare to vert. int. saturation vapor value binned by same T

• Suggests suitable entraining plumes can capture T dependence

^

^

Runs, data R. Neale, analysis K. Hales



Entraining convective available potential energy and 
precipitation binned by column water vapor, w

• buoyancy & precip. 
pickup at high w

•boundary layer and 
lower free troposph. 
moisture contribute 
comparably*
•consistent with importance 
of lower free tropospheric 
moisture (Austin 1948; 
Yoneyama and Fujitani 1995; Wei 
et al. 1998; Raymond et al. 1998; 
Sherwood 1999; Parsons et al. 
2000; Raymond 2000; Tompkins 
2001; Redelsperger et al. 2002; 
Derbyshire et al. 2004; Sobel et al. 
2004; Tian et al. 2006)

*Brown & Zhang 1997 entrainment; scheme and microphysics 
affect onset value, though not ordering. 

Neelin, Peters, Lin, Holloway & Hales,  Phil Trans. Roy. Soc. A, 2008 

Holloway & Neelin,  JAS,  2009



Plume model stability boundaries (onset of vertical 
vel. at 175-225 hPa) for various entrainment cases

C1, C2, C3, C4: free troposheric entrainment 0, 1, 2, 4 x 10-3 hPa-1

(ABL entrainment 0.18 hPa-1)
Deep inflow B entrainment ~ z-1 in lower troposphere

Interactive: plume w equation, entrainment           , no detrainment
1
m

m
 z

Nauru sonde basic state + LFT & ABL T 
pert’n, LFT moisture perturbation

analysis 
S. Sahany



Plume model stability boundaries for various 
entrainment cases

C1, C2, C3, C4: free troposheric entrainment 0, 1, 2, 4 x 10-3 hPa-1

(ABL entrainment 0.18 hPa)
Deep inflow B entrainment ~ z-1 in lower troposphere

Interactive: plume w equation, entrainment           , no detrainment
1
m

m
 z

Nauru sonde basic state + LFT T pert’n, 
LFT moisture perturbation

analysis 
S. Sahany



Prec & column water vapor: autocorrelations in time

• Long 

autocorrelation 

times for 

vertically 

integrated 

moisture (once 

lofted, it floats 

around)

• Nauru ARM site 

upward looking 

radiometer + 

optical gauge

Column water vapor

Cloud liquid water

Precipitation

Neelin, Peters, Lin, Holloway & Hales,  2008,  Phil Trans. Roy. Soc. A



TMI precipitation and column water vapor spatial 
correlations

analysis BaijunTian



TMI-AMSRE precipitation and column water vapor 
temporal correlations

analysis BaijunTian



Precip conditioned on lag/lead column water vapor

• High water 

vapor several 

hours ahead still 

useful for pickup 

in precipitation

• Consistent with 

high water vapor 

 favorable 

environment, but 

stochastic plume

• Nauru ARM site 

upward looking 

radiometer + 

optical gauge
Holloway and Neelin 2010, JAS



Obs. Freq. of occurrence of w/wc (precipitating pts) 

Gaussian core

Critical

Eastern Pacific for various tropospheric temperatures

•But exponential tail above critical pt.  more large events
• with Gaussian core, akin to forced tracer advection- diffusion problems

(e.g.  Shraiman & Siggia 1994, Pierrehumbert 2000, Bourlioux & Majda 2002)

Exponential tail

•Peak just below critical pt.  self-organization toward wc

Neelin, Peters & Hales, 2009, JAS 



Precipitating freq. of occurrence vs. w/wc

Critical

Eastern Pacific for various tropospheric temperatures

•Includes super-Gaussian ~exponential range above critical pt.

Exponential range?

•CAM3.5 preliminary comparison

Column

saturation

Runs R. Neale, analysis K. Hales



•coarse-grained 

to 24km grid

•so far Jan 1997 

(not conditioned 

on precipitation)

•exponential 

range (?) small; 

faster drop 

above qsat

*analysis Hsiao-ming Hsu

lower trop. int. water vapor (mm)

WRF W. Pac (4 km run) preliminary comparison*:
frequency of occurrence N of lower tropospheric

water vapor by qsat (T)

lower trop. 
qsat(T)

N
~Exponential 

range?

qsat=38

wc(38)



Passive tracer advection-diffusion---probability 
density function from simple flow configuration

Adapted from Bourlioux & Majda 2002 Phys. Fluids

High Peclet number 
(low diffusivity)

Pe=104

Varying 
autocorrelation-time 

tjof flow´

Prototype applicable 
to tropospheric 
tracers? Incl. CWV??

“Vertical” flow (across gradient) const in vertical, sinusoidal in horizontal, 
stoch. (Gaussian) in time; horizontal flow constant in space, sinusoid in time



Distribution of Column-int. MOPITT CO obs. &
GEOS-Chem simulations 20S-20N & subregions

~exponential

tails

2000-2005
2001-2006

Analysis: B. Tian, Q. Li, L. Zhang Neelin et al., GRL, 2010, in press



Distribution of daily CO2 anomalies

• AIRS retrievals
(Chahine et al 2005, 2008)

• GEOS-Chem

simulations 

projected on AIRS 

weighting functions

(Analysis: Ben Lintner)

(Analysis: Qinbin Li, Li Zhang)

Neelin, Lintner, Tian, Li, Zhang, Patra, Chahine & Stechmann, GRL, 2010, in press



TMI probability density function for observed 
column water vapor

Analysis: 
Baijun Tian

Anomalies relative to monthly mean, tropical oceans 20S-20N

Gaussian core
(fit at half power)

~exponential
on high side

Neelin, Lintner, Tian, Li, Zhang, Patra, Chahine & Stechmann, GRL, 2010, in press



NCEP reanalysis daily column water vapor 
probability density function

• Anomalies relative to 30-day running mean 
• Asymmetric exponential tails, assoc. with ascent/descent
• Low precip.: symmetric exponential tails

Analysis:
Ben Lintner

Neelin, Lintner, Tian, Li, Zhang, Patra, Chahine & Stechmann, GRL, 2010, in press



1. CAM 3.5 at 0.5° qualitatively captures onset of deep convection 

(from microwave retrievals) in Temp- column water vapor 

plane (WRF too?). Plume models suggest obs onset a constraint 

on entrainment.

• Background: CWV a useful variable for characterizing onset 

of convection (sharp pickup at critical value; large datasets)

2. Precip space, time autocorrelation<<water vapor potentially 

consistent with stochastic plumes but  try to retain power law 

autocorrelations?

3. Characteristic CWV distribution above critical more variable in 

models than obs---real?.  Hypothesized mechanism implies long 

tails in other tropospheric tracers--- confirmed.

• Background: CWV distribution: Gaussian core below critical 

but exponential tail above. High precip rates freq >> Gaussian.

Summary


