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• Some important ‘features’ (possibly) associated with convection scheme

– Double ITCZ

– Unrealistic timing and intensity of convective precipitation ( e.g., diurnal cycle )

– Too rapid transition from stratocumulus to cumulus along the subtropical transect

– Biases of water vapor & clear sky LW radiation (?)

– Too strong subtropical high in summer (?)

– Too strong hydrological cycle (?)

– Monsoon

– Lack or weak MJO

– Climate sensitivity of cirrus clouds

– Many other features since ‘convection’ is the ‘pump’ of the atmospheric circulation



• Limitations in Current Convective Parameterizations

I. Convective updraft does not have a time memory

:  Quasi-steady convective updraft plume

II. Compensating subsidence entirely exists within the same column as the convective 
updraft

:  a << 1 ( a : convective updraft fractional area ) 

III. Other ‘tangible’ parameterization issues

1. Unified treatment of ‘shallow’ and ‘deep’ convection

2. Unified treatment of ‘dry’ and ‘moist’ convection

3. Unified treatment of ‘forced’ and ‘free’ convection

4. Treatment of downdraft dynamics

5. Parameterization of lateral mixing

6. 2-moment cumulus microphysics interacting with aerosols

7. The vertical overlap of convective cloud for radiation, evaporation of precipitation, and wet 
scavenging of aerosol   
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“ Breaking the Cloud Parameterization Deadlock ”
by David Randall, Marat Khairoutdinov, Akio Arakawa, Wojciech Grabowski. BAMS. 2003. 

Sungsu Park wants to prove that 
he is investing his whole life to something that is worthwhile to do.  



Major Remaining Issues in the Parameterization of Convection

I. Unified Treatment of Shallow and Deep Convection

II. Unified Treatment of Dry and Moist Convection

III. Unified Treatment of Forced and Free Convection

IV. Treatment of Downdraft Dynamics

I. Parameterization of Lateral Mixing

II. Convection across the Scale Barrier

III. Cloud Overlap for Microphysics, Radiation, and Aerosol Wet Deposition

IV. Microphysics interacting with Aerosols
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• Cloud base mass flux is computed from CIN for shallow and CAPE for deep convection.
• However, convection embryo should not know what is happening in the upper air ( 
where CAPE is computed ) before it reaches there. This issue of ‘ the violation of time 
history ’ also arises to CIN closure when the convection rises from the lower PBL.
• The real convection scheme

1. should not have any closures based on CIN/CAPE. 
2. should resolve different sizes of shallow (small R) and deep (larger R) convection. 
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• Cumulus ( i.e., moist convection ) is merely a visualization of dry convection from 
below. There is no reason why the god assigns different physics on the dry and moist 
convection.
• However, in the CAM4, dry convection is incompletely treated in the PBL scheme ( e.g., 
no non-local transport ) while moist convection is treated in the convection scheme.
• The real convection scheme

1. should be able to treat both the dry and moist convection in the same way. 
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Unified Treatment of Forced and Free Convection 
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• Current convection schemes can only handle free convection. Weak convection with 
negative buoyancy near the PBL top ( e.g., forced convection ) cannot be handled. 

• The real convection scheme
1. should be able to treat forced convection,
2. which requires general treatments of ‘multiple plumes’ and ‘downdraft dynamics’. 

Downdraft



Treatment of Downdraft Dynamics  

• Treatment of downdraft in most convection schemes is highly uncertain. 
In the CAM deep convection, downdraft is

1. generated at level of the minimum MSE at a fixed fraction of updraft mass flux.
2. independent of evaporation of precipitation.

• The real convection scheme
1. should be able to simulate the evaporation of precipitation within downdraft.
2. should be able to treat multiple sources of downdraft ( e.g., ‘forced convection’, 

‘mixing between saturated and unsaturated airs’ ).
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• The real convection scheme
1. should allow finite ‘updraft/downdraft’ fractional area.
2. should allow multi-column distributions of compensating subsidence.
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Parameterization of Lateral Mixing  

• The most robust findings on the lateral mixing rate of a single updraft plume came 
from the laboratory and field experiments in the 1950s :

• However, all the existing convection schemes do not use this because
1. they do not compute R,
2. they are aiming at simulating the mixing rate of ensemble-mean updrafts 

instead of an individual single plume.

• Current parameterizations of ensemble-mean mixing rate are highly uncertain, 
incomplete, and physically non-attractive. To make things worse, the behavior of 
convection is highly sensitive to the parameterization of lateral mixing rate. 

• The real convection scheme
1. should be able to simulate plume radius R of individual plume,
2. should be able to treat multiple plumes with different R. 

 

ε0 =
c
R

 

R : Radius of Plume
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